• Title/Summary/Keyword: Snubber

Search Result 411, Processing Time 0.029 seconds

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Im, Mun-Hyeok;Hwang, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.130-138
    • /
    • 2002
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absorbers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber were addressed. Practical pulse testing method was also proposed to identify the frequency response characteristics of the snubber.

High-Power-Factor Boost Rectifier with a Passive Lossless Snubber (무손실 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.617-625
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. These equivalent circuits are analyzed so that the overshoot voltage across the main switch, the snubber current, and the turn-off transition time can be predicted analytically. From these results, the normalized overshoot voltage is reduced to 1 as $_W2T_on$ varies from zero to $\pi$/2, and then it is fIxed at 1 for $_W2T_on$> $\pi$/2. The peak snubber inductor current is directly proportional to the input current. The turn-offtransition time wltoffvaries from 0 to 2.57, depending on $_W2T_on$. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Hwang, Tae-Yeong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.89-99
    • /
    • 2001
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber are addressed. Practical pulse testing method was also proposed to identify the frequency response of the snubber.

  • PDF

Flyback-type Snubber of High Efficiency for 10kV IGCT in 7MW Wind Turbine Systems

  • Shirmohammadi, Siamak;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.359-360
    • /
    • 2015
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of rise of current and peak over voltage across IGCT during turn on and off state respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes an isolated inductor snubber circuit that not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Loss analysis of conventional di/dt snubber and OVP circuit is performed for the 3-level NPC type back-to-back VSC supplied from grid voltage of 6.9kV. In comparison with the conventional snubber, isolated inductor snubber has a fewer number of components and improved efficiency leading to a reliable and efficient wind turbine systems.

  • PDF

Investigation and Implementation of a Passive Snubber with a Coupled-Inductor in a Single-Stage Full-Bridge Boost PFC Converter

  • Meng, Tao;Ben, Hongqi;Li, Chunyan;Wei, Guo
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.206-213
    • /
    • 2013
  • In this paper, an improved passive snubber is investigated in a single-phase single-stage full-bridge boost power factor correction (PFC) converter, by which the voltage spike across primary side of the power transformer can be suppressed and the absorbed energy can be transferred to the output side. When compared with the basic passive snubber, the two single-inductors are replaced by a coupled-inductor in the improved snubber. As a result, synchronous resonances in the snubber can be achieved, which can avoid the unbalance of the voltage and current in the snubber. The operational principle of the improved passive snubber is analyzed in detail based on a single-phase PFC converter, and the design considerations of both the snubber and the coupled-inductor are given. Finally, a laboratory-made prototype is built, and the experimental results verify the feasibility of the proposed method and the validity of the theoretical analysis and design method.

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF

A New Power Factor Correction Circuit Using Boost Converter (부스트 컨버터를 이용한 새로운 역율 개선회로)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 1997
  • According to the wide - spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The high switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF

Modeling and Analysis of the Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant (발전소 배관지지용 유압완충기의 동특성 모델링 해석)

  • 이재천;황태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.87-91
    • /
    • 1997
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state equations of 9th order to describe the dynamics of the snubber was established by Sirnulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers to the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which are temporary locking displacements of control valves and same steady-state pressures of all internal chambers in the snubber.

  • PDF

A Study on Gas Pressure Fluctuation Characteristics inside Pipe Line Passing Through a Snubber at Hydrogen Compressor (수소압축기 스너버 관로 내부의 맥동파 특성에 관한 연구)

  • Shim, K.J.;Yi, C.S.;Akbar, Wanda Ali;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-171
    • /
    • 2006
  • An experiment to observe reduction of pressure fluctuation in the compressing system utilizing snubber has done. The experiment measured pressure at inlet and outlet of snubber. It used an air compressor as a model of hydrogen one. Snubber with buffer and snubber without buffer were used to get comprehensive comparison between both of that snubber. An analysis by using Fast Fourier Transform (FFT) method was conducted to verify working pressure frequency. With this method pure signal of static pressure was filtered from noisy signal. The experiment was run for several speeds of piston movement. It was controlled by adjustable frequency regulator that controled rotation of actuator motor. This was connected to the piston-reciprocating compressor with V-belt. From result obtained, the fluctuation was increasing proportionally when frequency of driver motor was increased.

  • PDF

A New Energy Recovery Snubber for Boost Converter (부스트 컨버터용 새로운 에너지재생 스너버)

  • 김만고;김진환
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.124-130
    • /
    • 1997
  • The main switch of high-frequency boost converter may be failed because the high switching current or voltage can damage this switch. The high switching stress can be reduced by snubber circuit. In this paper, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.

  • PDF