• Title/Summary/Keyword: Snow mold

Search Result 13, Processing Time 0.026 seconds

Evaluation of Fungicides for Control of Gray Snow Mold Caused by Typhula incarnata on Cool Season Turfgrass (한지형 잔디의 설부소립균핵병 방제를 위한 살균제 평가)

  • Chang, Tae-Hyun;Lee, Seung-Jun
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.102-109
    • /
    • 2012
  • Commercial formulation of fungicides was studied in the golf course for evaluation against Typhula incarnata causal agents of gray snow mold. Efficacies of fungicides application, fungicide mixture, fungicides applied method (irrigation and spray) and fungicides applied time (early fall and late fall) were evaluated for their influence on the chemical control of gray snow mold of turfgrass during the winter season in Yongpyeong golf course, Korea. Unsprayed control has significantly more disease severity than three fungicides (azoxystrobin, propiconazole, and tebuconazole) were applied to field plots. Effect of three fungicides was over 80% with control value for controlling gray snow mold on Kentucky bluegrass and creeping bentgrass species. Effect of fungicide mixture with different family groups had an over 93% control value of gray snow mold on Kentucky bluegrass species. It was not significantly difference in fungicidal effect according to applied method (irrigation and spray) with azoxystrobin on Kentucky bluegrass and creeping bentrasss species. Effect of fungicides applied time was a significantly difference on disease control by tebconazole early fall spray.

Aggressiveness of Three Snow Mold Fungi on Creeping Bentgrass Cultivars under Controlled Environment Conditions

  • Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2009
  • Snow molds are the most important winter diseases of turfgrass in the United States and Canada. Eight isolates of three snow mold fungal species (three isolates of Typhula ishikariensis, three of T. incarnata, and two of Microdochium nivale) were collected from infected turfgrasses on golf courses. The isolates were evaluated for their relative aggressiveness on three cultivars (L-93, Penncross, and Providence) of creeping bentgrass (Agrostis palustris) under the same controlled conditions. Four plant ages (15, 19, 23 and 27 week-old plants from germination to inoculation) were evaluated for their susceptibility to the three pathogens and for the recovery of the plants. Regardless of age or cultivar of the host plant, M. nivale was found to be more aggressive and faster to infect and colonize than Typhula species. After three weeks recovery, M. nivale-inoculated plants showed higher disease severity than plants inoculated with the two Typhula species. Plants infected by Typhula species displayed no significant difference in disease severity. As creeping bentgrass plants get older, the severity of disease caused by three snow molds gradually decreases. This effect was observed in all cultivars tested, suggesting expression of age-related resistance as the bentgrass plants matured.

Difference of Susceptibility on Bentgrass Cultivars to Pink Snow Mold Caused by Microdochium nivale (벤트그라스 품종이 Microdochium nivale에 의한 자주색설부병에 대한 감수성 차이)

  • Chang, Tae-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.177-183
    • /
    • 2011
  • The susceptibility of cultivars of three bentgrass species (creeping, colonial, and velvet bentgrass) was evaluated on detached leaves assays with pink snow mold 9 isolates caused by Microdochum nivale in Petri dishes and whole plants under controlled conditions. The pink snow mold isolates obtained from infected turfgrasses on golf courses in Wisconsin were tested on response of fungicides and temperature. Detached leaf assay and susceptibility of bentgrass cultivars were evaluated with potted adult seeding during 80 days. Nine isolates were susceptible to two fungicides and were significantly different among isolates. Mycelial growth was varied in response of temperatures among isolates. There were significant differences in development and colonization of the fungus on detached leaf assay among bentgrass species include culvitars. There were significant differences on whole plants in disease severities among the three bentgrass species, particularly between tetraploids (creeping and colonial) and diploid (velvet) species, and among cultivars within each species, indicating that there are varying levels of susceptibility in species and cultivars to M. nivale. This study could be applied to evaluate the susceptibility of bentgrass to pink snow mold and also to predict a prospective evaluation of bentgrass cultivars to pink snow mold in fields in a breeding program.

Response of Bentgrass Cultivars to Microdochium nivale Isolates Collected from Golf Courses

  • Chang, Tae-Hyun;Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.232-341
    • /
    • 2011
  • Pink snow mold, caused by Microdochium nivale, is a major disease on cool season turfgrasses in golf courses in northern Unites States. The relative susceptibility of 17 commercial cultivars of three bentgrass species (creeping, colonial and velvet bentgrass) to Microdochium nivale and the aggressiveness of M. nivale eight isolates obtained from infected turfgrasses on golf courses in Wisconsin were evaluated under controlled conditions. For the field trial, susceptibility of 2 year-old 12 commercial bentgrass cultivars was evaluated after inoculating three M. nivale isolates in the fields. There were significant differences in disease severities among the three bentgrass species, particularly between tetraploids (creeping and colonial) and diploid (velvet) species, and among cultivars within each species, indicating that there are varying levels of susceptibility in species and cultivars to M. nivale. Host resistance by days of cold hardening was confirmed, by detecting the resistance by 30 days of cold hardening treatments. In field trial, susceptibility of 12 bentgrass cultivars was highly correlated to the results obtained from growth chamber experiments. The positive correlation of the susceptibility between growth chamber experiments and field trials demonstrates that the growth chamber method is a useful technique for saving time, space and labor to evaluate efficiently pink snow mold susceptibility of bentgrass cultivars. This study could be applied to evaluating susceptibility of bentgrass to pink snow mold and also predicting a prospective evaluation of bentgrass cultivars to pink snow mold in fields in a breeding program.

Resistance Evaluation of Several Turfgrass Species and Graminious Crop Species against Rhizoctonia cerealis and Typhula incarnata under Controlled Conditions (주요 잔디류와 화본과 식량 밭작물의 황색마름병원균 및 설부소립균핵병원균에 대한 저항성 평가)

  • Chang, Seog-Won;Chang, Tae-Hyun;Yang, Geun-Mo;Choi, Joon-Soo;Rho, Yong-Taek
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • During 2008~2009 winter season, yellow patch and gray snow mold occurred on turfgrass plants in golf courses in Kangwon and Jeonbuk provinces, respectively. The fungi associated with the diseases were identified as Rhizoctonia cerealis Van der Hoeven and Typhlua incarnata Lasch ex Fr., based on the morphological characteristics of hyphae and sclerotia. R. cerealis and T. incarnata were pathogenic to most turfgrass and crop species tested. R. cerealis infected crown, stem and leaf tissue of the host plants, and the symptom was light yellow circular patch. Individual infected leaf near the margin of patch developed red color first and finally turn brown. The symptoms caused by gray snow mold pathogen are water-soaked spots, and became a watery soft rot. Infection parts became yellow and then turned brown followed by death of the whole plant. White mycelia were developed on higher petioles, leaves, and on soil where these plant parts lay, and black sclerotia of variable size and shape formed in the mycelial mass. All isolates tested were pathogenic on most turfgrass and crop plants, and significantly different in aggressiveness. Disease severity increased with longer snow cover days on target plants, suggesting that disease severity was expressed over snow cover days. There were significant differences in disease severity among the graminious species, and among cultivars within each species, indicating varying levels of susceptibility to R. cerealis and T. incarnata.

Genetic Relationships among Typhula ishikariensis Varieties from Wisconsin

  • Chang, Seog-Won
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.135-143
    • /
    • 2015
  • Typhula ishikariensis Imai is a causal agent of Typhula snow mold, one of the most important turfgrass diseases in northern regions of the United States. Within Wisconsin isolates, there are three district groups clustered with known isolates of T. ishikariensis var. ishikariensis, var. canadensis and var. idahoensis as identified by RAPD markers. To further investigate the genetic relationship among these groups (varieties), monokaryon-monokaryon and dikaryon-monokaryon mating experiments were conducted. Mating types from var. ishikariensis, var. canadensis and var. idahoensis isolates were paired in all possible combinations. Pairings between var. canadensis and var. idahoensis were highly compatible, while no compatibility was detected between var. ishikariensis and either var. canadensis or var. idahoensis. These results indicate that var. ishikariensis is genetically separated from var. canadensis and var. idahoensis, whereas var. canadensis and var. idahoensis appeared to be genetically related to each other as a taxonomic unit. In the genetic relationship with the known biological species, var. ishikariensis and var. canadensis were genetically related to biological species I and II, respectively. However, var. idahoensis was not compatible with any of the biological species, suggesting that the pathogen may be in the process of biological speciation from var. canadensis.

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Sensitivity to Fungicides of Typhula incarnata Isolates Causing Gray Snow Mold (설부소립균핵병균 Typhula incarnata의 살균제 감수성)

  • Lee, Seong Jun;Lee, Dong Woon;Chang, Taehyun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.69-75
    • /
    • 2012
  • In response of fungicides for control of gray snow mold, isolates of Typhula incarnata were collected from three golf courses in 2012 Yongpyeong, Korea and tested for sensitivity to propiconazole, tebuconazole and azoxystrobin fungicides. Four discriminatory concentrations were used to detect in vitro sensitivity of 50 isolates. Mean 50% effective concentration inhibiting mycelial growth ($EC_{50}$) values for tebuconazole was the lowest among the three fungicides. The $EC_{50}$ value of tebuconazole ranged from 0.0005 ${\mu}g\;ml^{-1}$ to 0.014 ${\mu}g\;ml^{-1}$ with a mean of 0.0048 ${\mu}g\;ml^{-1}$. The mean $EC_{50}$ values of propiconazole in triazole family was 0.5825 (0.78-1.651) ${\mu}g\;ml^{-1}$. $EC_{50}$ value of azoxystrobin ranged from 0.0017 ${\mu}g\;ml^{-1}$ to 0.131 ${\mu}g\;ml^{-1}$ with a mean of 0.0278 ${\mu}g\;ml^{-1}$. There was no correlation among $EC_{50}$ values for propiconazole, azoxystrobin and tebuconazole indicating no cross-resistance relationships with each other. Results of this study were confirmed no resistance isolates in vitro sensitivity of T. incarnata of three fungicides in Yongpyeong.

Identification and Chemical Control of Gray Snow Molds Caused by Typhula spp. on Golf Course in Korea (우리나라의 골프코스에서 Typhula spp.에 의해 발생하는 설부병의 동정 및 방제)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Lee, Hye-Min;Moon, Hyo-Sun;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • In March of 2004, gray snow mold (Typhula blight) caused by Typhula spp. occurred on perennial ryegrass (Lolium perenne L.) and Kentucky bluegrass (Poo pratensis L.) at MuJu golf courses in Jeonbuk Province. Leaves in the affected areas were matted together and frequently covered with white to grayish mycelia. Sclerotia were formed on the leaf blade, leaf sheath, or crown regions. The fungus isolated from the diseased leaf formed whitish mycelium, clamp connections, and light pink to brown, irregular-shaped small sclerotia of less than 1.4 mm in diameter, which are characteristic to Typhula incarnata. Optimum temperature ranges for mycelial growth were $5^{\circ}C$ to $15^{\circ}C$. The causal organism was confirmed to be T. incarnata as the partial sequence of its ribosomal RNA ITS1 (internal transcribed spacer) region was 91% homologous to those of T. incarnata in GenBank database. Out of the 14 fungicides tested fur antifungal activity in vitro, 10 fungicides including iprodione, tebuconazole, polyoxin D, flutolanil, hexaconazole, tolclofos-methyl, fosetyl-Al, mepronil, pencycuron+tebuconazole, and fenarimol completely inhibited fungal growth at their recommended concentrations. In the field test, these fungicides and others such as thifluzamide and thiram effectively controlled the gray snow mold of turfgrass with some variable degrees of control efficacies.

A study on the operation method of safety device of rotating quick coupler (회전 퀵커플러 안전장치 동작방법 연구)

  • Song, Jong-Won;Song, Chil-Sung
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Excavators are construction machines used for digging soil, transporting soil, dismantling buildings and clearing the ground at construction sites. There are various attachments attached to the arm end of the excavator and used for various operations. There are the most common types of buckets attached for excavation and other types of attachments used for foresting, road cleaning, snow removal, and waste disposal. When multiple types of work are done at the same time, several attachments must be replaced and a device called a quick coupler is used to reduce replacement time. Although a quick coupler reduces the replacement time of the Attachment, it is necessary to attach safety devices to prevent unintentional detachment of attached attachments during the operation. To prevent the attachment from leaving or falling regardless of the operator's intention, support is installed in the hook of the bucket pin and controlled through a separate hydraulic cylinder to ensure safety. When attaching an attachment, it shall be attached without any action. This study is intended to verify the design validity of safety devices to prevent falls of attachments occurring at construction sites.