• 제목/요약/키워드: Snow load analysis

검색결과 53건 처리시간 0.024초

격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가 (Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members)

  • 노명현;안동욱;주형중
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

유체-구조 연성해석을 통한 삼각단면 형상의 비닐하우스에 관한 연구 (A study of the triangular cross section type greenhouse using fluid-structure interaction)

  • 이규한;김정재;김정주;이상준;하호진;강태원
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to study the fluid-dynamic and structural characteristics of the conventional greenhouse and to find possible improvement on the current greenhouse. The greenhouse is required to have enough rigidity of the structure while the installation and reinforcement should be as easy as possible. In this study, the structural stability to the snow load was tested through the computational structure analysis based on the building structure standard, and the wind load was computed by computational fluid-structure interaction analysis. The current analysis can be used as a reference data for a new greenhouse and it will be economically viable by reducing installation and maintenance costs.

유한요소해석을 통한 중량물 이동대차 시저스붐의 구조 및 강도 해석 (Structure and Strength Analysis of Scissors Boom of Heavy Load Transporter through Finite Element Analysis)

  • 임현호;양창민;최권웅;최대우
    • 산업경영시스템학회지
    • /
    • 제46권spc호
    • /
    • pp.61-67
    • /
    • 2023
  • Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.

기계 하중에 따른 PV모듈 변형 분석 (An analysis of the deformation of PV module under different mechanical loads)

  • 최주호;정태희;송희은;김일수;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.58-66
    • /
    • 2013
  • Recently, PV module that the most important part of the photovoltaic system is more widened to lower manufacturing costs for module. However, the broad PV module results to the serious mechanical damage corning from installation circumstances such as snow, wind etc of snow and finally lead to the dramatic degradation of the electrical behavior of PV module. In this paper, 3 kinds of PV modules that consist of the different thickness and area of front glass and the diverse cross sectional structures of the frame are prepared for this experiment. The drooped length and electrical outputs of the PV modules are measured by means of applying 600Pa mechanical load to the PV modules from 1200Pa to 5400Pa base on the mechanical load test procedure of K SC IEG 61215 standard. The simulation data are obtained by the simulation tool as ANSYS and those are validate by comparing with the those experimental results figure out relations between the deformation and the constituent part of PV module.

굴곡형 케이블-막 지붕 시스템의 비선형 해석 (Nonlinear Analysis of Curved Cable-Membrane Roof Systems)

  • 박강근;권익노;이동우
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

Sensitivity of Seismic Response and Fragility to Parameter Uncertainty of Single-Layer Reticulated Domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1607-1616
    • /
    • 2018
  • Quantitatively modeling and propagating all sources of uncertainty stand at the core of seismic fragility assessment of structures. This paper investigates the effects of various sources of uncertainty on seismic responses and seismic fragility estimates of single-layer reticulated domes. Sensitivity analyses are performed to examine the sensitivity of typical seismic responses to uncertainties in structural modeling parameters, and the results suggest that the variability in structural damping, yielding strength, steel ultimate strain, dead load and snow load has significant effects on the seismic responses, and these five parameters should be taken as random variables in the seismic fragility assessment. Based on this, fragility estimates and fragility curves incorporating different levels of uncertainty are obtained on the basis of the results of incremental dynamic analyses on the corresponding set of 40 sample models generated by Latin Hypercube Sampling method. The comparisons of these fragility curves illustrate that, the inclusion of only ground motion uncertainty is inappropriate and inadequate, and the appropriate way is incorporating the variability in the five identified structural modeling parameters as well into the seismic fragility assessment of single-layer reticulated domes.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Micro-cracks에 의한 PV 모듈의 전기적 특성 분석 (The analysis of electrical characteristics with Micro-crack in PV module)

  • 송영훈;지양근;;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.25-30
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with Micro-cracks in Photovoltaic module. Micro cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. And The solar cells have to with stand the stress under out door operation in the finished module. Here the mechanical stress is induced by temperature changes and mechanical loads from wind and snow. So, we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because micro-cracks accelerated aging by thermal cycling test, according to IEC61215. Before every test, we checked output and EL image of PV module. As the result of first step, we detected little power loss(0.9%). But after thermal cycling test increased power loss about 3.2%.

  • PDF

추적식 태양광 발전기 설계를 위한 풍하중 해석 (Wind load analysis for designing a tracking solar generator)

  • 김영은;정규원;이재진
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.672-680
    • /
    • 2017
  • 태양광 발전 시스템은 태양광 패널이 부착되어 있는 구조물, 이를 지지하는 부분과 발전된 전력을 계통 또는 부하측에 공급하는 장치로 구성된다. 태양광 패널의 발전효율은 태양빛의 입사량에 영향을 받기 때문에 패널이 태양빛을 가장 많이 받을 수 있는 방향으로 패널 구조물을 설치한다. 그러나 태양은 계속 이동하기 때문에 고정식 보다는 태양을 향하여 패널이 회전하는 방식이 더욱 효율이 좋다. 태양광 패널 구조물은 야외에 설치되므로 풍하중, 적설하중 지진하중 등이 작용한다. 본 논문에서는 태양광 패널 구조물에 가장 영향이 큰 풍하중을 유한요소법을 사용하여 구하고 이를 적용하여 태양 추적식 발전 장치의 구조물을 설계하였다. 특히 패널간의 간격에 따른 풍하중을 구하고, 패널 구조물이 지면과 이루는 각도에 따른 풍하중의 변화도 구하였다. 패널간의 간격은 간격이 없을 경우, 간격이 40 mm, 80 mm일 경우 등 3가지 경우에 대하여 해석을 하였으며, 지면과의 각도는 30도, 45도, 60도 등에 대하여 해석을 하였다. 해석결과 풍하중은 패널간의 간격이 없을 경우가 가장 적게 나타났고, 지면과의 경사각이 클수록 커지는 것을 알 수 있었다.