• 제목/요약/키워드: Snow days

Search Result 88, Processing Time 0.027 seconds

Effect of the Late Fall Fertilization and Snow Cover Period on Spring Greenup of Creeping Bentgrass at Following Year (늦 가을철 시비와 적설로 인한 크리핑 벤트그래스의 이듬해 봄철 생육)

  • Lee, Duk-Ho;Jeon, Jun-Ki;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.123-132
    • /
    • 2009
  • This study was designed to investigate the effect of the late fall fertilization applied with methyl urea(MU), compound chemical fertilizer(CF), humate(HM), and organic compost fertilizer(NS) on spring greenup of creeping bentgrass at following year. The plots were treated with various snow cover periods before transforming to ski slopes from golf holes during 2007 fall to 2008 spring. The highest visual quality and greenup rate were shown on MU or HM applications at 10 days before snow cover treatment. The CF treatment which had a highest phosphorus rate was most effective with a 13 cm of root length at the reconversion date to golf hole from ski slope of the following spring. However, the application of CF followed by immediate snow cover showed the worst results on visual quality and green color caused by a leaf burning damage from the residual effect of CF. At least 10 days were required to avoid phytotoxicant from undissolved granular of CF before snow cover practise. The application of NS showed the highest result on leaf dry weight at no snow cover plot in next spring, but not on green color and visual quality. Therefore, the proper interval period of snow cover after late fall fertilization should be an important management skill on the spring greenup of creeping bentgrass on following year transforming from ski slope to golf hole.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

Estimates on appropriate storage for deicing materials for the 2018 Pyeongchang Winter Olympic Games (평창 동계올림픽을 대비한 적정 제설제 비축량 추정)

  • Kim, Jin Guk;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.51-59
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to estimate the appropriate storage required for deicing materials in Gangwon-do for successful snow removal operations during the 2018 Pyeongchang Winter Olympic Games. The final estimates of the deicing chemicals can be used by public agencies to aid decision making. METHODS : First, the database that exists in the road snow-removal management system (RSMS) of the Ministry of Land, Infrastructure, and Transport, South Korea was used to determine historical characteristics of snow removal experiences in Gangwon-do. The database includes historical information, including regional and road weather data and number of snow-removal works. Second, both the maximum and the actual amount of storages used for deicing materials in the past three years were analyzed. Lastly, the final estimates of the deicing materials were evaluated using an additional equation. It considers frequency of salt spray application, total administrative road length estimated by road agencies, and number of days required for snow removal works in Gangwon-do. Consequently, the results show that significant differences were not observed between the final estimates and the maximum amount used during the past three years. RESULTS : The final estimates of the deicing materials are almost similar to the maximum amount used during the past three years in Gangwon-do. CONCLUSIONS : The study shows that the estimates of deicing chemicals can be useful when decision making is required for the snow-removal policy.

Study on Characteristics of Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in 2014 (2014년 대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY)기간 강설 및 눈결정 특성분석)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Ko, A-Reum;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Han, Sang-Ok;Park, Young-San
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • Characteristics of snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is 6 to 14 February 2014, when the accumulated snowfall amount is 192.8 cm with the longest snowfall duration of 9 days. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. In general, the ice clouds tended to exist below around 2~3 km with the consistent easterly flows, and the winds shifted to northerly~northwesterly above the clouds layer. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging $-12{\sim}-16^{\circ}C$. However, the association of snow crystal habits with temperature and super-saturation in the cloud could not be examined in the current study. Better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher-level weather information of snow quality for skiers participating in the winter sports, and estimating more accurate snowfall amount, location, and duration with the fallspeed of solid precipitation.

Response of Bentgrass Cultivars to Microdochium nivale Isolates Collected from Golf Courses

  • Chang, Tae-Hyun;Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.232-341
    • /
    • 2011
  • Pink snow mold, caused by Microdochium nivale, is a major disease on cool season turfgrasses in golf courses in northern Unites States. The relative susceptibility of 17 commercial cultivars of three bentgrass species (creeping, colonial and velvet bentgrass) to Microdochium nivale and the aggressiveness of M. nivale eight isolates obtained from infected turfgrasses on golf courses in Wisconsin were evaluated under controlled conditions. For the field trial, susceptibility of 2 year-old 12 commercial bentgrass cultivars was evaluated after inoculating three M. nivale isolates in the fields. There were significant differences in disease severities among the three bentgrass species, particularly between tetraploids (creeping and colonial) and diploid (velvet) species, and among cultivars within each species, indicating that there are varying levels of susceptibility in species and cultivars to M. nivale. Host resistance by days of cold hardening was confirmed, by detecting the resistance by 30 days of cold hardening treatments. In field trial, susceptibility of 12 bentgrass cultivars was highly correlated to the results obtained from growth chamber experiments. The positive correlation of the susceptibility between growth chamber experiments and field trials demonstrates that the growth chamber method is a useful technique for saving time, space and labor to evaluate efficiently pink snow mold susceptibility of bentgrass cultivars. This study could be applied to evaluating susceptibility of bentgrass to pink snow mold and also predicting a prospective evaluation of bentgrass cultivars to pink snow mold in fields in a breeding program.

The Features Associated with the Yellow Sand Phenomenon Observed in Korea in Wintertime (겨울철 황상 현상의 특징)

  • 전영신;김지영;부경온;김남욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.487-497
    • /
    • 2000
  • Spring time is a favorable season to be easily observed the Yellow Sand phenomenon in East Asia. In particular most of the phenomenon tend to occur in April. However, Yellow Sand phenomenon was observed from almost the whole country of Korea in winter of 1966, 1977 and 1999. The features of the synoptic weather pattern in the source regions, air stream flow between the source region and Korea, the measurement of TSP concentration, aerosol size distribution, and chemical composition of snow samples associated with Yellow Sand phenomenon were investigated. The result showed the characteristic evolutionary feature of the synoptic system associated with Yellow Sand phenomena, that is, a strong low level wind mobilized the dust within 2 or 3 days before Yellow Sand phenomenon being observed in Seoul. The wind was remarkably intensified in the source region on January 24, 1999 under the strong pressure gradient, A trajectory analysis showed that the Yellow Sand particle could be reached to Korea within 2 days from the source region, Gobi desert, through Loess plateau and Loess deposition region. The TSP concentration at the top of Kwanak mountain during the Yellow Sand phenomenon is abruptly increasing than the monthly mean concentration. The size resolved number concentration of aerosols ranging from 0.3 to 25${\mu}{\textrm}{m}$ was analyzed during Yellow Sand episode. It was evident that aerosols were distinguished by particles in the range of 2-3 ${\mu}{\textrm}{m}$ to result in the abrupt increase in January 1999, After Yellow Sand phenomenon, there was heavy snow in Seoul. By the analysis of snow collected during that time, it was observed that both the Ca(sup)2+ concentration and pH were increased abnormally compared to those in the other winter season.

  • PDF

A New Spray Chrysanthemum Cultivar, 'Snow Bowl', Resistant to White Rust, Long Vase Life and Single Type with White Petals for Cut Flower

  • Lim, Jin-Hee;Shin, Hak-Ki;Park, Sang Kun;Cho, Hae-Ryong;Rhee, Hye-Kyung;Kim, Mi-Seon;Joung, Hyang Young;Yae, Byeong Woo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.303-307
    • /
    • 2010
  • A new spray chrysanthemum cultivar 'Snow Bowl' was released by National Institute of Horticultural & Herbal Science(NIHHS), Rural Development Administration (RDA), in 2008. The cross was made in 2005 between '03B1-230', breeding lines of NIHHS and 'Sei-Alps'. Trials were conducted from 2006 to 2008 for the evaluation and selection of this cultivar, including shading cultures in summer and retarding cultures in spring. The natural flowering time of 'Snow Bowl' is late October, but year-round flowering is possible by photo-periodic control. It has single type flowers with white petals. The growth of plant is very vigorous and it is resistant to white rust. The diameter of flower is 6.3cm. Number of flowers per stem and petals per flower are 12 and 31, respectively. Days to flowering under the short day treatment is about 59 and its vase life is 24.1 days in autumn season. 'Snow Bowl' was applied as No. 2009-179 on February 18, 2009 for variety protection and the plant variety protection rights have been registered as No. 3239 on August 3, 2010 at the Korea Seed and Variety Service.

Economic Loss Assessment caused by Heavy Snowfall - Using Traffic Demand Model and Inoperability I-O Model (대설의 경제적 피해 - 교통수요모형과 불능투입산출모형의 적용)

  • Moon, Seung-Woon;Kim, Euijune
    • Journal of Korea Planning Association
    • /
    • v.53 no.6
    • /
    • pp.117-130
    • /
    • 2018
  • Heavy snow is a natural disaster that causes serious economic damage. Since snowfall has been increasing recently, there is a need for measures against heavy snowfall. In order to make a policy decision on heavy snowfall, it is necessary to estimate the precise amount of damage by heavy snowfall. The direct damage of the heavy snow is severe, however the indirect damage caused by the road congestion and the urban dysfunction is also serious. Therefore, it is necessary to estimate indirect damage of snowfall. The purpose of this study is to estimate the effects on the regional economy from the limitation in traffic logistics caused by heavy snow using the transport demand model and inoperability input-output Model. The result shows that the amount of production loss caused by the heavy snow is KRW 2,460 billion per year and if the period of snowfall removal is shortened by one day or two days, it could be reduced to KRW 1,219 or 2,787 billion in production loss.

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).

Effects of Ozone, Cloud and Snow on Surface UV Irradiance (지표 자외선 복사 변화에 미치는 오존 전량, 구름 및 적설 효과)

  • Lee, Yun-Gon;Kim, Jhoon;Lee, Bang-Yong;Cho, Hi-Ku
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.439-451
    • /
    • 2004
  • Total solar irradiance (750), total UV irradiunce (TUV) and erythemal UV irradiance (EUV) measured at King Sejong station $(62.22^{\circ}S,\;58.78^{\circ}W)$ in west Antarctica have been used together with total ozone, cloud amount and snow cover to examine the effects of ozone, cloud and snow surface on these surface solar inadiunce over the period of 1998-2003. The data of three solar components for each scan were grouped by cloud amount, n in oktas $(0{\leq}n<3,\;3{\leq}n<4,\;4{\leq}n<5,\;5{\leq}n<6,\;6{\leq}n<7\;and\;7{\leq}n<8)$ and plotted against solar zenith angle (SZA) over the range of $45^{\circ}\;to\;75^{\circ}$. The radiation amplification factor (RAE) is used to quantify ozone effect on EUV. RAF of EUV decreases from 1.51 to 0.94 under clear skies but increases from 0.94 to 1.85 under cloudy skies as SZA increases, and decreases from 1.51 to 1.01 as cloud amount increases. The effects of cloud amount and snow surface on EUV are estimated as a function of SZA and cloud amount after normalization of the data to the reference total ozone of 300 DU. In order to analyse the transmission of solar radiation by cloud, regression analyses have been performed for the maximum values of solar irradiance on clear sky conditions $(0{\leq}n<3)$ and the mean values on cloudy conditions, respectively. The maximum regression values for the clear sky cases were taken to represent minimum aerosol conditions fur the site and thus appropriate for use as a normalization (reference) factor for the other regressions. The overall features for the transmission of the three solar components show a relatively high values around SZAs of $55^{\circ}\;and\;60^{\circ}$ under all sky conditions and cloud amounts $4{\leq}n<5$ and $5{\leq}n<6$. The transmission is, in general, the largest in TUV and the smallest in EUV among the three components of the solar irradiance. If the ground is covered with snow on partly cloudy days $(6{\leq}n<7)$, EUV increases by 20 to 26% compared to snow-free surface around SZA $60^{\circ}-65^{\circ}$, due to multiple reflections and scattering between the surface and the clouds. The relative difference between snow surface and snow-free surface slowly increases from 9% to 20% as total ozone increases from 100 DU to 400 DU under partly cloud conditions $(3{\leq}n<6)$ at SZA $60^{\circ}$. The snow effects on TUV and TSO are relatively high with 32% and 34%, respectively, under clear sky conditions, while the effects changes to 36% and 20% for TUV and TSO, respectively, as cloud amount increases.