• Title/Summary/Keyword: Snow Fall

Search Result 54, Processing Time 0.029 seconds

Some Remarkable Earth Surface Processes under the Morpho-climatic regime of Mongolian Steppe Zone (기후지형학 관점에서 본 몽골 스텝지역의 지형형성작용 특색)

  • OH, Kyong-Seob;YANG, Jae-Hyuk;CHO, Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • This work is to elucidate in typological aspect main geomorphological processes in the morphogenetic system of Mongolian steppe zone. Its morphogenesis manifest interaction of intense gelifraction and active erosion either by slope run-off or by wind. Intense gelifraction owes both to cold temperature regime with great amplitude, and to moisture associated with snow fall. Erosion of material produced by gelifraction is assured by surface run-off of summer rainfall and spring eolian activities. The geomorphological landscape sculptured by such morphogenetic processes manifest low-relief smooth slopes. This feature reveals that intense gelifraction keeps abreast with removal of weathering product by surface run-off and wind.

Rainfall and Runoff Characteristics on a Deciduous Forest Watershed in Mt. Ungsek, Sancheong (산청 웅석봉군립공원 내 활엽수림유역의 강수와 유출특성)

  • Kim, Ki-Dae;Choi, Hyung-Tae;Lim, Hong-Geun;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • This study aimed to investigate orographic precipitation and green dam (water conservation function) characteristics in a deciduous forest watershed in the region of Mt. Ungseok, Sancheong, Gyeongnam, South Korea. The rainfall and runoff of the watershed were monitored for six years (2011~2016) at the weather station and at the weir of the watershed, respectively. During the study period, the rainfall in the watershed (mountainous area) was larger than that of the meteorological station (flat area) nearest to the watershed. Besides, compared to the normal year (1981~2010), the rainfall has increased and the seasonal distribution of rainfall of the mountainous area has changed. These changes might have been caused by climate change. The runoff ratio was highest in spring, followed by winter, summer and fall, whilst the runoff was highest in summer, followed by spring, fall and winter. This difference seems to be due to the melting of snow in dry spring and intensive rainfall in summer. The total runoff in the watershed was calculated as $10,143.8ton{\cdot}ha{\cdot}yr^{-1}$.

Home Range and Behavioral Characteristics of the Endangered Korea Gorals(Naemorhedus caudatus) With GPS Collar (GPS Collar를 이용한 멸종위기 한국 산양(Naemorhedus caudatus)의 행동 특성)

  • Cho, Chea-Un;Gyun, Gu-Hee;Yang, Jung-Jin;Lim, Sang-Jin;Lee, An-Na;Park, Hee-Bok;Lee, Bae-Keun
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This study was to understand the ecological characteristics of the goral through the study on goral behavioral characteristics and to be carried out to provide basic behavioral data such as annual home range, seasonal home range and monthly used altitude with 4,752 locations obtained during the study period through home range analysis of three long-tailed gorals (Naemorhedus caudatus) in Soeraksan. For this study, gorals who were rescued from heavy snow in Seoraksan were used. The gorals were equipped with GPS Collar, released at their natural habitats, and then monitored from May, 2010 to September, 2011. According to our results, annual home ranges of the gorals (n=3) have $0.88km^2$ of MCP 95%, $0.27km^2$ of MCP 50%, $0.43km^2$ of FK 95%, and $0.09km^2$ of FK 50% respectively. Seasonal home range of MCP 95% was $0.47km^2$ in spring, $0.45km^2$ in summer, $0.63km^2$ in fall and $0.50km^2$ in winter respectively and home ranges of fall was the largest. In the case of FK 95% analysis, home ranges were $0.23km^2$ in spring, $0.19km^2$ in summer, $0.33km^2$ in fall, and $0.22km^2$ in winter respectively and the largest seasonal home range was fall. Female and male annual home ranges of the gorals were $1.03km^2$ for female and $0.58km^2$ for male. In analysis of the monthly used altitudes which were used Jun, July, and August were higher than in the other months and the altitudes which were used in Dec, Jan, and Feb were lower than in the other months. This study was to secure basic data for the habitat management policy, restoration, and conservation of Korea gorals and to be conducted to contribute to the success in doing or planning stage of the wild animal restoration.

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field (배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

Winterkill and Strategy of Golf Course Management: A Review (동절기 피해의 이해와 겨울철 골프장 관리: 리뷰)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • Winterkill can be defined as any injury including freeze stress kill, winter desiccation, and low temperature disease to turfgrass plants that occurs during the winter period. The major damages from winterkill were low temperature kill, crown hydration, and winter desiccation. Low temperature kill is caused by air and soil temperature. Soil temperature affect more severe to turfgrass than air temperature because low soil temperature cause fetal damage to turfgrass crown. Crown hydration is a form of winter injury in which intercellular water within the plant freezes and causes physical injury to the cell membrane and wall. This is eventually resulted in dehydration of cell. Winter desiccation is the death of leaves or whole plants due to drought during the winter period. To reduce winterkill damage, cultivar selection is very important. If changing cultivar is not allowed, cold temperature hardiness needs to be increased by providing nutrients especially phosphorus and potassium in the late fall. Turf cover is effective way to reduce winterkill damage. Remaining snow is positive process to reduce winterkill damage by insulating soil temperature. The previous researches reported many materials as turf cover such as straw, polypropylene, polyester, and wood mat. Aeration and topdressing is one of the process against winterkill. Both methods are mainly conducted to reduce thickness of thatch layer. In recent, relatively new materials called black or winter topdressing sand are used to protect soil temperature from low air temperature and thaw ice crystal that may remain in soil.

The Distribution of Precipitation in Sokcho Area (속초지방의 강수 분포)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2000
  • This study examined the spatial distribution of precipitation in Sokcho area. The hourly, daily and monthly precipitation on the 2 stations, 5 AWS in Sokcho area were analyzed by daily, monthly, altitudinal distribution and synoptic environment. The results of the Study are as follows. The amount of Yearly precipitation, 1970~1999 in Sokcho area is gradually increasing. The amount of monthly precipitation 1970~1999 at Sorak weather observation station (altitude 148m), Compared with that in 7 Stations is greatest in spring, Summer and autumn. Because the valleys near Ssangcheon river are funnels for sea wind into Sorak weather observation station. The amount of Summerly precipitation at Mishiryong(1993~1999), the highest altitude in 7 weather observations stations is more 95.2mm than that of Sokcho airport, the lowest altitude, but the amount of winterly precipitation at Sokcho airport is more 89.6mm than that of Mishiryong. When the heavy rainfall and the heavy Snowfall occured in Sokcho area, wind systems were mainly a sea wind (north-north-eastly wind, north-westly wind) and daily mean wind speed was respectively 4.4㎧, 3.6㎧. The amount of the heavy rainfall and heavy snow fall in Sokcho area is closely associated with the north-eastly stream at the lower and the upper level toward the coast of East sea(Sokcho area).

  • PDF

Reviewing the Explosively Deepening Cyclone(Cyclonic Bomb) over the East Sea with the Satellite Observations (위성관측에 의한 동해상의 폭발적 저기압의 고찰)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The characteristics of rapid development of the low pressure system over the East Sea from 06 to 08 Nov., 1995 has been analyzed in detail by the synoptic numerical products and satellite observations. The Low system was initially triggered the development of the baroclinic leaf cloud over the border of the northern part of Korea and China and moved eastward and then developed explosively com-ma or lambda type cloud system over the East Sea. To forecast well the general development and movement of the coastal winter cyclone over the East Sea popularly in a numerical simulation by several scientists, the large baroclinicity, continuous support of water vapor, and sequential cold outbreak over the warm sea surface have been more commonly concerned about. The cyclone which the central surface pressure was dropped 40hPa within 24 hours has often accompanied strong wind and heavy snow- or rain-fall in the winter season. In all successive observations with 12-hourly satellite imagery and analyzed meteorological variables in this period, the centers of the sea-level pressure and 500hPa geopotential height associated with this cyclone were typically illustrated by moving farther eastward using GMS combined enhanced IR images. The maxi-mum wind sustained by this system with the intensity and central pressure of tropical storm was about 60 knots with the center pressure drop of 44hPa/day similar to the North American cyclonic bomb and Atlantic storm.

Transition of Rice Culture Practices during Chosun Dynasty through Old References IV. Preparation of Seeds and Land (주요 고농서를 통한 조성시대의 도작기술 발전 과정 영구 IV. 조선시대의 비곡종 및 경지관리)

  • Lee, Sung-Kyum;Guh, Ja-Ok;Lee, Eun-Woong;Lee, Hong-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.576-585
    • /
    • 1991
  • General procedures of seed preparation as conventional guide had been established in China before most of Korean literature documented them. ‘Chwijongbeob’ (method of seed select) was to select good quality of seeds and to discard the rest. In ‘Seonjongbeob’ (method of seed grading) although China employed only ‘Sooseonbeob’ (method of seed select with water), but seeds were selected in order of selection of seeds by winds, selection of seeds by sieve and selection of seed with water in Korea. As compared with the recent techniques, those methods were perfect techniques for selection of good quality seeds of rice, except for method of seed selection by salt water was developed. The method for measurement of seed moisture, and for measurement of melted snow, spoiled urine and extracted juice by boiling water with the bone of livestock were originated from ancient China. The farming books in Korea were more or less followed the above methods. However, these techniques were complicated and impractical interms of validity and rationality. Also, it is judged that these tchniques are more appropriate in dry areas and alkaline soil of China rather than in Korean conditions. The plowing is a work to begin farming, and is operated for air ventilation between atmosphere and earth. Also, this techniques was adopted in the farming books from the early to the late Chosun dynasty without changes. Fields were deep-plowed in the first, in fall (or in spring) and for cultivation, and were shallow -plowed in the second, in spring (or in summer) and in intertillage. The former was for water reserve and land preparation, and the later was for weed control with intertillage. However, plowing in fall which was different from fallowing in dry areas, was recommended in Korea (Jikseol). but was not practiced in Sejongsilrok. This was changed with time, and plowing for cultivation in Korea was interrelated with use of green manure crops, method of plowing of upseting plough, method of manure practice and sometimes dry plowing. In addition, until the 15th century method of using a kind of plowing-tool made of log as farm tools was created to support reclamation for enlargement of farm land in mountaineous and coastal areas. For desolate farm lands by many internal and external disturbances, one tried to recover yield ability by increasing labor productivity from the 17th or 18th century. To do this, ‘Banjongbeob’ (culture method by upset plowing weed control) and ‘Hwanubeob’(culture method by firing weed control) which were cultural methods of ancient China were readapoted but the results were not clearly informed. Also, the reality of those was reexamined in the end of the Chosun dynasty.

  • PDF

Rates and Factors of Path Widening in Seongpanak Hiking Trail of Mount Halla, Jeju Island (한라산 성판악 등산로 노폭의 확대 속도와 요인)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.296-311
    • /
    • 2008
  • In order to examine the rates and factors of path widening in Mount Halla, the retreat of path sidewalls was monitored at 32 sites of Seongpanak Hiking Trail located between 875 m and 1,400 m in elevation. The mean rate of sidewall retreat for the period 2002-2008 is 50.6 mm, equivalent to 10.0 mm/yr. The retreat rate of frozen period is 19.3 mm/yr, while the rate of unfrozen period is 4.3 mm/yr. The latter is divided into the rainy and dry periods that exhibit the retreat rates of 5.9 mm/yr and 2.9 mm/yr, respectively. The retreat rate of sidewalls is also varied with seasons; winter shows the maximum rate of 42.2 mm/yr, while summer exhibits the minimum rate of 1.3 mm/yr. Spring and fall show the intermediate rates of 13.9 mm/yr and 6.4 mm/yr, respectively. Soil hardness and elevation are not closely related to the retreat rate of sidewalls, even though the retreat rate is larger at the north-faced sidewalls than the south-faced sidewalls during the frozen period. Pipkrake is likely to be the most important factor contributing to the path widening in that the retreat of winter months accounts for 76.7% of the total retreat. The hiking trail is placed under the climatic conditions which develop pipkrake in 85 days annually. In addition, it is usual to observe the path sidewall covered with pipkrake in the freezing month of December and the thawing months of March and April. On the other hand, deflation and rainsplash erosion are not important due to the weak wind speed and the forested trail. Rainwash is also insignificant in that the path has been almost paved to mitigate trampling effects. Although biological activity is not dominant, hikers cause a large retreat of sidewalls in the thawing months since they would walk on the sidewalls to avoid snow-melting pools on the path.