• Title/Summary/Keyword: Snake-like Contour

Search Result 6, Processing Time 0.025 seconds

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour (서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할)

  • Park, Jae Heung;Se, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.101-109
    • /
    • 2012
  • In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

Face Contour Detection by Using B-spline Snake for Creating Human Face Caricature

  • Lee, Jang-Hee;Woo, Jae-Kun;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.399-402
    • /
    • 2003
  • This paper deals with the making avatar like a caricature from human face image which is made by web camera. Generally, the Image made by web camera is not low quality but also, there are always various lights and backgrounds. So, It is impossible to recognize a human face's contour by some methods which only find some feature points of a image. Therefore, In this paper, we propose a new method for overcoming defeat of that methods. First, we got the area of human face roughly by color information. And then, we could find the exact human face's contour by using B-spline Snake.

  • PDF

Balloon-like Active Contour Model Using Variable Closet Points (가변적인 폐쇄 점들을 이용한 풍선 형태의 능동 윤곽 모델)

  • Yi, Chu-Ho;Jeong, Seung-Do;Cho, Jung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3654-3659
    • /
    • 2012
  • Active contour model or snake is widely used for segmentation method in the area of the image processing and computer vision. The main problem in the active contour model is that results are very dependent to the closet points of the numbers and the location in initial step. Especially, in case of balloon-like active contour model, the small region which consist of intial closet points are expanded until the edge is reached. It is a serious problem because the considered region are huge with limited points. To solve this problem, in this paper, we propose the method that the number of closet points could be change based on the distance between points.

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution (TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할)

  • Park, Sunhwa;Kim, Hoyong;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.