• 제목/요약/키워드: Sn-Pb-Bi solder

검색결과 48건 처리시간 0.026초

리플로우 솔더링 공정 조건에 따른 Sn-Bi-Ag와 Sn-Ag-Cu 복합 무연 솔더 접합부 특성 연구 (A Study on Properties of Pb-free Solder Joints Combined Sn-Bi-Ag with Sn-Ag-Cu by Conditions of Reflow Soldering Processes)

  • 김자현;천경영;김동진;박영배;고용호
    • 마이크로전자및패키징학회지
    • /
    • 제29권3호
    • /
    • pp.55-61
    • /
    • 2022
  • 본 연구에서는 용융온도가 중온계 무연 솔더인 Sn-3.0Ag-0.5Cu(SAC305)와 저온계 무연 솔더인 Sn-57Bi-1Ag를 사용하여 형성된 복합 무연 솔더 접합부의 특성에 대하여 보고 하였다. SAC305 솔더볼이 형성된 ball grid array(BGA) 패키지와 Sn-57Bi-1Ag 솔더 페이스트가 도포된 flame retardant-4(FR-4) 인쇄회로기판(printed circuit board, PCB)을 리플로우 솔더링 공정을 이용하여 복합 무연 솔더 접합부를 형성 하였다. 공정 온도 프로파일을 두 가지 형태로 달리하여 리플로우 솔더링 공정을 진행하였으며 리플로우 솔더링 공정 조건에 따른 계면 반응, 금속간화합물(intermetallic compound, IMC)의 형성, Bi의 확산 거동 등 복합 무연 솔더 접합부 계면 특성을 비교 분석 하였다. 또한, 열 충격 시험을 통하여 리플로우 솔더링 공정에 따른 복합 무연 솔더 접합부의 신뢰성 특성을 비교하고 열 충격 시험 전후 전단 시험을 진행하여 접합부의 기계적 특성 변화를 분석하였다.

Sn-Ag-Bi-In계 BGA볼의 솔더링 특성 연구 (A Study on the Soldering Characteristics of Sn-Ag-Bi-In Ball in BGA)

  • 문준권;김문일;정재필
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.505-509
    • /
    • 2002
  • Pb is considered to be eliminated from solder, due to its toxicity. However, melting temperatures of most Pb-free solders are known higher than that of Sn37Pb. Therefore, there is a difficulty to apply Pb-free solders to electronic industry. Since Sn3Ag8Bi5In has relatively lower melting range as $188~200^{\circ}C$, on this study. Wettability and soldering characteristics of Sn3Ag8Bi5In solder in BGA were investigated to solve for what kind of problem. Zero cross time, wetting time, and equilibrium force of Sn3Ag8Bi5In solder for Cu and plated Cu such as Sn, Ni, and Au/Ni-plated on Cu were estimated. Plated Sn on Cu showed best wettability for zero cross time, wetting time and equilibrium farce. Shear strength of the reflowed joint with Sn3Ag8Bi5In ball in BGA was investigated. Diameter of the ball was 0.5mm, UBM(under bump metallurgy) was $Au(0.5\mu\textrm{m})Ni(5\mu\textrm{m})/Cu(18\mu\textrm{m})$ and flux was RMA type. For the reflow soldering, the peak reflow temperature was changed in the range of $220~250^{\circ}C$, and conveyor speed was 0.6m/min.. The shear strength of Sn3Ag8Bi5In ball showed similar level as those of Sn37Pb. The soldered balls are aged at $110^{\circ}C$ for 36days and their shear strengths were evaluated. The shear strength of Sn3Ag8Bi5In ball was increased from 480gf to 580gf by aging for 5 days.

Tin Pest 방지 솔더합금의 크리프 특성 (Creep Deformation Behaviors of Tin Pest Resistant Solder Alloys)

  • 김성범;유진;손윤철
    • 마이크로전자및패키징학회지
    • /
    • 제12권1호
    • /
    • pp.47-52
    • /
    • 2005
  • 전세계 전자패키지 산업에서 납(Pb) 사용에 대한 환경규제 움직임이 본격화되고 있어 새로운 무연솔더의 개발이 활발히 이루어지고 있다. 게다가 무연솔더의 신뢰성에 대한정보가 아직까지 많이 부족한 실정이다 무연솔더의 신뢰성에 영향을 줄수 있는 것 중의 하나가 Sn pest라고 알려진 동소체 변태이다. Sn pest가 형성될 때 동반되는 부피의 증가는 솔더 조인트의 신뢰성을 저하시킨다. 이미 보고된 바에 따르면, Sn 고용도가 있는 원소(Pb, Bi, Sb)들을 첨가시킬 경우 Sn pest가 효과적으로 억제된다. 그러나 Sn pest를 억제하는 합금에 대한 기계적인 특성에 연구가 거의 이루어지지 않았다. 본 연구에서는 Sn과 Sn-0.7Cu를 기반으로 하여 Bi, Sb을 첨가한 솔더 합금을 사용하여 lap shear크리프 실험을 하였다. 본 연구에서 사용한 합금들의 변형율은 전체적으로 Sn-3.5Ag를 기반으로 하는 합금들보다 높았다. 파괴까지 이르는 변형량은 Sn-0.5Bi가 가장 크고 Sn-0.7Cu-0.5Sb 합금이 가장 작았는데 이러한 경향은 Sn-0.5Bi 합금의 파단면에 Sn globules이 길게 늘어나 있고 Sn-0.7Cu-0.5Sb 합금에서는 더 짧은 Sn globules 이 관찰되는 결과와 일치하였다.

  • PDF

Sn-CU계 다원 무연솔더의 미세구조와 납땜특성 (Microstructures and Solderability of Multi-composition Sn-Cu Lead-free Solders)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.598-603
    • /
    • 2005
  • To develope new lead-free solders with the melting temperature close to that of Sn-37Pb$(183^{\circ}C)$, Sn-0.7Cu-5Pb-1Ga, Sn-0.7Cu-5Pb-1Ag, Sn-0.7Cu-5Pb-5Bi-1Ag, and Sn-0.7Cu-SBi-1Ag alloys were composed by adding low-netting elements such as Ga, Bi, Pb, and Ag to Sn-0.7Cu. Then the melting temperatures, microstructures, wettability, and adhesion properties of these alloys were evaluated. DSC analysis showed that the melting temperature of Sn-0.7Cu-SPb-1Ga was $211^{\circ}C$, and those of other alloys was in the range of $192\~200^{\circ}C$. Microstructures of these alloys after heat-treatment at $150^{\circ}C$ for 24 hrs were basically composed of coarsely- grown $\beta-Sn$ grains, and $Cu_6Sn_5$ and $Ag_3Sn$ intermetallic precipitates. Sn-0.7Cu-5Pb-1Ga and Sn-0.7Cu-5Pb-5Bi-1Ag showed excellent wettability, while Sn-0.7Cu-5Bi-1Ag and Sn-0.7Cu-5Pb-5Bi-1Ag revealed good adhesion strength with the Cu substrates. Among 4 alloys, Sn-0.7Cu-5Pb-5Bi-1Ag with the lowest melting temperature $(192^{\circ}C)$ and relatively excellent wettability and adhesion strength was suggested to be the best candidate solder to replace Sn-37Pb.

INTERFACIAL REACTION AND STRENGTH OF QFP JOINTS USING SN-ZN-BI SOLDER WITH VARYING LEAD PLATING MATERIALS

  • Iwanishi, Hiroaki;Imamura, Takeshi;Hirose, Akio;Ekobayashi, Kojirou;Tateyama, Kazuki;Mori, Ikuo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.481-486
    • /
    • 2002
  • We have investigated the effects of plating materials for Cu lead (Sn-lOPb, AwPdJNi, Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu) on properties of QFP joints using a Sn-8Zn-3Bi solder. The results were compared with the joints using Sn-3. 5Ag-0. 7Cu and Sn-37Pb solders. As a result, the joints with the Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu plated Cu lead had the reliability comparable to those of the Sn-3.5Ag-0.7Cu and Sn-37Pb soldered joints with respect to the joint strength after the high temperature holding tests at 348K to 423k. In particular, the joint with the Sn-3.5Ag plated Cu lead had the best reliability. This is caused by the low growth rate of a Cu-Sn interfacial reaction layer that degrades the joint strength of the soldered joints. Consequently, the Sn-3.5Ag plating was found to be most feasible plating for the Sn-8Zn-3Bi soldered joint.

  • PDF

유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동 (Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module)

  • 김주희;김아영;박노창;하정원;이상권;홍원식
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

무연 솔더 볼의 공정조건 최적화에 관한 연구 (A Study on the Process Condition Optimization of Lead Free Solder Ball)

  • 김경섭;선용빈;장호정;유정희;김남훈;장의구
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.126-129
    • /
    • 2002
  • This article presents that the affecting factors to solderability and initial reliability. It was discussed that effect of the solder ball hardness and composition on the reliability of solder joints. In this study, lead free solder alloys with compositions of Sn-Cu, Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi were applied to the $\muBGA$ packages. As a result of experiments, the high degree of hardness with the displacement of 0.22mm was obtained Sn-2.0Ag-0.7Cu-3.0Bi. The shear strength of lead free solder was higher than of Sn-37Pb solder, and it was increased about 150% in Sn-2.0Ag-0.7Cu-3.0Bi.

  • PDF