• Title/Summary/Keyword: Sn-0.3Sb-0.4Ag-37.4Pb

Search Result 2, Processing Time 0.015 seconds

A Study on the Creep Characteristics of QFP Solder Joints (QFP 솔더접합부의 크립특성에 관한 연구)

  • Cho, Yun-Sung;Cho, Myung-Gi;Kim, Jong-Min;Lee, Seong-Hyuk;Shin, Young-Eui
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.151-156
    • /
    • 2007
  • In this paper, the creep characteristics of lead and lead-free solder joint were investigated using the QFP(Quad Flat Package) creep test. Two kind of solder pastes(Sn-3Ag-0.5Cu, Sn-0.2Sb-0.4Ag-37.4Pb) were applied to the QFP solder joints and each specimen was checked the external and internal failures(i.e., wetting failure, void, pin hole, poor-heel fillet) by digital microscope and X-ray inspection. The creep test was conducted at the temperatures of $100^{\circ}C$ and $130^{\circ}C$ under the load of 15$\sim$20% of average pull strength in solder joints. The creep characteristics of each solder joints were compared using the creep strain-time curve and creep strain rate-stress curves. Through the comparison, the Sn-3Ag-0.5Cu solder joints have higher creep resistance than that of Sn-0.3Sb-0.4Ag-37.4Pb. Also, the grain boundary sliding in the fracture surface and the necking of solder joint were observed by FE-SEM.

Effects of Fatigue Strength by Solder Ball Composition (솔더볼 조성에 의한 피로강도의 영향)

  • 김경수;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder composition on the ball fatigue strength for BGA (Ball Grid Array) packaging. The test pieces are assembled using eutectic composition 63Sn/37Pb, 62Sn/36Pb/2Ag, and 63Sn/34.4Pb/2Ag/0.5Sb solder after pre-conditioning at MRT Lv 3 (Moisture Resistance Test Level) and then conducted under T/C (Temperature Cycle test). For each case, the ball shear strength was obtained and micro structure photos were taken. SEM (scanning electron microscope) and EDX (Energy Dispersive X-ray) were used to the analyze failure mechanism. The growth rate of Au-Sn intermetallic compound in Sn63Pb34.5Ag2Sb0.5 solder was slow when compared to 63Sn/37Pb solder and 62Sn/36Pb/2Ag solder. The degradation of shear strength of solder balls caused by solder composition was discussed.