• 제목/요약/키워드: Sn(II) ethylhexanoate

검색결과 6건 처리시간 0.015초

변형 폴리올 공정에서 pH에 따라 합성된 Sn 나노입자의 형상 변화 및 형성기구 (Morphology and Formation Mechanism of Sn Nanoparticles Synthesized by Modified Polyol Process at Various pH Values)

  • 신용무;이종현
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.578-584
    • /
    • 2014
  • To synthesize Sn nanoparticles (NPs) less than 30 nm in diameter, a modified polyol process was conducted at room temperature using a reducing agent, and the effects of different pH values of the initial solutions on the morphology and size of the synthesized Sn NPs were analyzed. tin(II) 2-ethylhexanoate, diethylene glycol, sodium borohydride, polyvinyl pyrrolidone (PVP), and sodium hydroxide were used as a precursor, reaction medium, reducing agent, capping agent, and pH adjusting agent, respectively. It was found by transmission electron microscopy that the morphology of the synthesized Sn NPs varied according to the pH of the initial solution. Moreover, while the size decreased to 11.32 nm with an increase up to 11.66 of the pH value, the size increased rapidly to 39.25 nm with an increase to 12.69. The pH increase up to 11.66 dominantly promoted generation of electrons and increased the amount of initial nucleation in the solution, finally inducing the reduced-size of the Sn particles. However, the additional increase of pH dominantly induced a decrease of PVP by neutralization, which resulted in acceleration of the agglomeration by collisions between particles.

Characterizations and Release Behavior of Poly [(R)-3-hydroxy butyrate]-co-Methoxy Poly(ethylene glycol) with Various Block Ratios

  • Jeong, Kwan-Ho;Kwon, Seung-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.418-423
    • /
    • 2008
  • Poly[(R)-3-hydroxy butyrate] (PHB) and methoxy poly(ethylene glycol) (mPEG) were conjugated by the transesterification reaction with tin(II)-ethylhexanoate (Sn(Oct)-II) as a catalyst. Hydrophobic PHB and hydrophilic mPEG formed an amphiphilic block copolymer which was formed with the self-assembled polymeric micelle in aqueous solution. In this study, we tried to determine the optimum ratio of hydrophobic/hydrophilic segments for controlled drug delivery. The particle size and shape of the polymeric micelle were measured by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Their size were 61-102 nm with various block ratios. Griseofulvin was loaded in the polymeric micelle as a hydrophobic model drug. The loading efficiency and release profile were measured by high performance liquid chromatography (HPLC). The model drug in our system was constantly released for 48 h.

화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성 (Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination)

  • 지상수;이종현
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.631-637
    • /
    • 2013
  • Synthesis of sub-micron $2SnO{\cdot}(H_2O)$ powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the $2SnO{\cdot}(H_2O)$ powders. In the synthesis of the $2SnO{\cdot}(H_2O)$ powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized $2SnO{\cdot}(H_2O)$ powders. A holding time of 1 hr in air at $500^{\circ}C$ sufficiently transformed the $2SnO{\cdot}(H_2O)$ into $SnO_2$ phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at $700^{\circ}C$. Hence, heating for 1 h at $500^{\circ}C$ made a porous $SnO_2$ film containing residual PVP, whereas dense $SnO_2$ films with no significant amount of PVP formed after heating for 1 h at $700^{\circ}C$.

Synthesis of High Molecular Weight 3-Arm Star PMMA by ARGET ATRP

  • Jeon, Hyun-Jeong;Youk, Ji-Ho;Ahn, Sung-Hee;Choi, Jin-Hwan;Cho, Kwang-Soo
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.240-244
    • /
    • 2009
  • High molecular weight(MW), 3-arm star poly(methyl methacrylate)(PMMA) with a narrow MW distribution($M_n$=570,000 g/mol, PDI=1.36) was successfully synthesized by activators regenerated by electron transfer(ARGET) atom transfer radical polymerization(ATRP). The polymerization was carried out with a trifunctional initiator/$CuBr_2$/N,N,N',N",N"-pentamethyldiethy lenetriamine(PMDETA) initiator/catalyst system in the presence of a tin(II) 2-ethylhexanoate [$Sn(EH)_2$] reducing agent at $90^{\circ}C$. The concentration of the copper catalyst was as low as 30 ppm, and a high initiation efficiency of the initiating sites was obtained. The chain-end functionality of the high MW, 3-arm star PMMA was confirmed by a chain extension experiment with styrene via ARGET ATRP, using the same catalyst system.

Ring Oxpening Polymerization of D,L-Lactide on Magnetite Nanoparticles

  • Tian Jing;Feng Ya-Kai;Xu Yong-Shen
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.209-213
    • /
    • 2006
  • The ring-opening polymerization of D,L-lactide initiated by tin(II) 2-ethylhexanoate $(Sn(Oct)_2)$ on the surface-initiated magnetite $(Fe_{3}O_4)$ nanoparticles was performed at $130^{\circ}C$. The effects of the polymer molar mass and concentration on the amount of surface polymer were investigated. The number average molecular weights, $M_n$, obtained by both NMR and GPC methods fit well within the accuracy of the applied methods and ranged from 1,100 to $4,040g\;mol^{-1}$. A surface functionalization density of up to 625 initiation sites per particle was obtained. The composition of various core-shell particles was determined by TGA, with results indicating magnetite $(Fe_{3}O_4)$ contents, ${\mu}m$, between 17 and 59 wt%. Under the influence of a magnetic field, the heating generated by superparamagnetic core-shell particles suspended in toluene presented guidelines for an optimization of magnetic particle systems with respect to an application for hyperthermia.

Synthesis and Micellar Characterization of CBABC Type PLGA-PEO-PPO-PEO-PLGA Pentablock Copolymers

  • Seong, Haseob;Cho, Eun-Bum;Oh, Joongseok;Chang, Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2342-2348
    • /
    • 2014
  • Poly(lactic-co-glycolic acid) (PLGA) were grafted to both ends of Pluronic$^{(R)}$ F68 ($(EO)_{75}(PO)_{30}(EO)_{75}$) triblock copolymer to produce poly{(lactic acid)$_m$-co-(glycolic acid)$_n$}-b-poly(ethylene oxide)$_{75}$-b-poly(propylene oxide)$_{30}$-b-poly(ethylene oxide)$_{75}$-b-poly{(lactic acid)$_m$-co-(glycolic acid)$_n$} (PLGA-F68-PLGA) pentablock copolymers. Molecular weights of PLGA blocks were controlled and five kinds of pentablock copolymers with different PLGA block lengths were synthesized using in-situ ring-opening polymerization of D,L-lactide and glycolide with tin(II) 2-ethylhexanoate ($Sn(Oct)_2$) catalyst. PLGA-F68-PLGA pentablock copolymers were characterized by $^1H$- and $^{13}C$-NMR, GPC, and TGA. The numbers (2m, 2n) of repeating units for lactic acid and glycolic acid inside PLGA segments were obtained as (48, 17), (90, 23), (125, 40), (180, 59), and (246, 64), with $^1H$-NMR measurement. From NMR data, the resultant molecular weights were determined in the range of 12,700-29,700, which were similar to those obtained from GPC. Polydispersity index was increased in the range of 1.32-1.91 as the content of PLGA blocks increased. TG and DTG thermograms showed discrete degradation traces for PLGA and F68 blocks, which indicate the weight fractions of PLGA blocks in pentablock copolymers can be calculated by TG profile and it is possible to remove PLGA block selectively. Hydrodynamic radius and radius of gyration of pentablock copolymer micelle were obtained in the range of 46-68 nm and 31-49 nm, respectively, in very dilute (i.e. 0.005 wt %) aqueous solution of THF:$H_2O$ = 10:90 by volume at $25^{\circ}C$.