• Title/Summary/Keyword: Smoothing Edge Images

Search Result 45, Processing Time 0.027 seconds

Smooth Edge Images Based on a Multilevel Morphological Filter

  • Yang, S.Q.;Jia, C.Y.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Edge detection is an important problem in computer vision and image understanding. Because the threshold is difficult to properly determine, edge images gained by the usually gradient-based segmentation methods are often tend to have many disjoint or overlapping boundaries, which makes the edge images spinous. In this paper, a practical multilevel morphological filter is presented for smoothing spinous edge images. The experimental results show that the method is effective in dealing with the images of a target in the sky.

  • PDF

Depth edge detection by image-based smoothing and morphological operations

  • Abid Hasan, Syed Mohammad;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.191-197
    • /
    • 2016
  • Since 3D measurement technologies have been widely used in manufacturing industries edge detection in a depth image plays an important role in computer vision applications. In this paper, we have proposed an edge detection process in a depth image based on the image based smoothing and morphological operations. In this method we have used the principle of Median filtering, which has a renowned feature for edge preservation properties. The edge detection was done based on Canny Edge detection principle and was improvised with morphological operations, which are represented as combinations of erosion and dilation. Later, we compared our results with some existing methods and exhibited that this method produced better results. However, this method works in multiframe applications with effective framerates. Thus this technique will aid to detect edges robustly from depth images and contribute to promote applications in depth images such as object detection, object segmentation, etc.

EDGE-DETECT INTERPOLATION FOR DIRECT DIGITAL PERIAPICAL IMAGES (경계강조 보간법을 이용한 디지털방사선사진상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.73-85
    • /
    • 1998
  • The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-detect interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation. and edge-sensitive interpolation. The obtained results were as follows : 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  • PDF

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

SPECKLE NOISE SMOOTHING USING AN MODIFIED MEAN CURVATURE DIFFUSION FILTER

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.159-162
    • /
    • 2008
  • This paper presents a modified mean curvature diffusion filter to smooth speckle noise in images. Mean curvature diffusion filter has already shown good results in reducing noise in images while preserving fine details. In the mean curvature diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. In this paper, the diffusion coefficient is modified to be controlled adaptively by local image surface slope and heterogeneity. The local surface slope contributes to preserving details (e.g.edges) in image and the local surface heterogeneity helps the smoothing filter consider the amount of noise in both edge and non-edge area. The proposed filter's performance is demonstrated by quantitative experiments using speckle noised aerial image and TerraSAR-X satellite image.

  • PDF

Generation of Multi-view Images Using Depth Map Decomposition and Edge Smoothing (깊이맵의 정보 분해와 경계 평탄 필터링을 이용한 다시점 영상 생성 방법)

  • Kim, Sung-Yeol;Lee, Sang-Beom;Kim, Yoo-Kyung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.471-482
    • /
    • 2006
  • In this paper, we propose a new scheme to generate multi-view images utilizing depth map decomposition and adaptive edge smoothing. After carrying out smooth filtering based on an adaptive window size to regions of edges in the depth map, we decompose the smoothed depth map into four types of images: regular mesh, object boundary, feature point, and number-of-layer images. Then, we generate 3-D scenes from the decomposed images using a 3-D mesh triangulation technique. Finally, we extract multi-view images from the reconstructed 3-D scenes by changing the position of a virtual camera in the 3-D space. Experimental results show that our scheme generates multi-view images successfully by minimizing a rubber-sheet problem using edge smoothing, and renders consecutive 3-D scenes in real time through information decomposition of depth maps. In addition, the proposed scheme can be used for 3-D applications that need the depth information, such as depth keying, since we can preserve the depth data unlike the previous unsymmetric filtering method.

Evaluation of Denoising Filters Based on Edge Locations

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.503-513
    • /
    • 2020
  • This paper presents a method to evaluate denoising filters based on edge locations in their denoised images. Image quality assessment has often been performed by using structural similarity (SSIM). However, SSIM does not provide clearly the geometric accuracy of features in denoised images. Thus, in this paper, a method to localize edge locations with subpixel accuracy based on adaptive weighting of gradients is used for obtaining the subpixel locations of edges in ground truth image, noisy images, and denoised images. Then, this paper proposes a method to evaluate the geometric accuracy of edge locations based on root mean squares error (RMSE) and jaggedness with reference to ground truth locations. Jaggedness is a measure proposed in this study to measure the stability of the distribution of edge locations. Tested denoising filters are anisotropic diffusion (AF), bilateral filter, guided filter, weighted guided filter, weighted mean of patches filter, and smoothing filter (SF). SF is a simple filter that smooths images by applying a Gaussian blurring to a noisy image. Experiments were performed with a set of simulated images and natural images. The experimental results show that AF and SF recovered edge locations more accurately than the other tested filters in terms of SSIM, RMSE, and jaggedness and that SF produced better results than AF in terms of jaggedness.

Halftone Noise Removal in Scanned Images using HOG based Adaptive Smoothing Filter (HOG 기반의 적응적 평활화를 이용한 스캔된 영상의 하프톤 잡음 제거)

  • Hur, Kyu-Sung;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.316-324
    • /
    • 2012
  • In this paper, a novel descreening method using HOG(histogram of gradient)-based adaptive smoothing filter is proposed. Conventional edge-oriented smoothing methods does not provide enough smoothing to the halftone image due to the edge-like characteristic of the halftone noise. Moreover, clustered-dot halftoning method, which is commonly used in printing tends to create Moire pattern because of the intereference in color channels. Therefore, the proposed method uses HOG to distinguish edges and the amount of smoothing to be performed on the halftone image is then calculated according to the magnitude of the HOG in the edge and edge normal orientation. The proposed method was tested on various scanned halftone materials, and the results show that it effectively removes halftone noises as well as Moire pattern while preserving image details.

Edge preserving method using mean curvature diffusion in aerial imagery

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.54-58
    • /
    • 2002
  • Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is eliminated and edges are preserved after removal of noise.

  • PDF