• Title/Summary/Keyword: Smoke control system

Search Result 234, Processing Time 0.024 seconds

Smokeless Starting for 4 Cycle Medium Speed Diesel Engine (4행정 중속 디젤기관의 스모크리스 시동)

  • Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 2014
  • Although smoke emitted from ships is not included in IMO(International Maritime Organiztion) regulation yet, it is one of the substance what is polluting mainly the air. Especially, its concentration is very high when an engine is started and a load is rapidly changed. This is caused by unburned fuel what is injected more than necessary quantity after combustion period. It is possible to decrease smoke concentration emitted at starting engine by controlling fuel injection quantity, but it is concerned that time to rated speed must be spent. Then a governor what can reduce the smoke concentration without a loss of time to rated speed is needed. We adopted a electro-hydraulic governor what can control dual fuel start limit function and achieved very low level of smoke concentration without greater the loss of time to rated speed.

A Study on the Application of Fire Protection Facilities in Large Enclosure Gymnasium (대규모 실내경기장의 소방방재설비 적용현황 분석)

  • Choi, Dong-Ho;Kim, Choon-Dong;Yang, Jeong-Hoon;Cho, Young-Hum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.135-145
    • /
    • 2010
  • The objective of this study is to draw basic data for the application of the fire protection planning for the future plan large enclosure buildings in Korea through an analysis of its characteristics by case studies of the domestic and foreign large scale gymnasiums. In this study, domestic building codes for the fire protection are investigated and fire detection systems, fire extinguishing systems, smoke control systems and evacuation systems of three large scale gymnasiums located at Korea and eight foreign countries are compared and analyzed. The results of this study show that infrared light fire detection system and flame detector for spacial characteristics are potentially used in fire protection systems of large scale gymnasiums: dry type sprinkler and sprinkler water gun are adopted in fire detection system; and smoke accumulation system is widely utilized in smoke control system.

  • PDF

A study on the optimal ventilation and smoke exhaust systems in case of fire in subway stations installed with PSD (PSD가 설치된 지하철 역사 내 화재 시 최적 배연시스템 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Kim, Doo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.527-539
    • /
    • 2018
  • The subway used by many passengers is required to maintain a safe and comfortable environment and PSD (Platform Screen Door) must be installed in the platform after reinforcing the standard in 2003. In the previous research, in case of subway fire to control it, it is necessary to design the optimal ventilation and smoke exhaust system according to equipment capacity of the smoke exhaust system. Therefore, in this study, based on the results of previous research, three-dimensional numerical analysis was performed for the CO gas and smoke flow by the subway ventilation system in case of platform fire. As a result of this study, it was found that in case of emergency, if only the upper-level smoke exhaust system is activated, the risk of evacuation is high due to CO gas (653.8 ppm) and smoke concentration ($768.4mg/m^3$). And when all the smoke exhaust systems are activated and only the fire side PSD is opened, CO gas (36.0 ppm) and smoke concentration ($26.2mg/m^3$) are detected and the propagation range of smoke flow was reduced. When all the smoke exhaust systems are activated and only the fire side PSD is closed, it was analyzed as the most effective ventilation mode in the evacuation environment due to the absence of smoke-recirculation.

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Stack Effect (연돌효과를 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • When the pressurization system that uses difference of pressure for smoke control is designed, the factors influencing on the pressure field in building should be applied to design process and the stack effect is one of the main factors. Numerical analysis based on network model in 20-story building is carried out to analyze the pressurization system of smoke control in consideration of stack effect. Calculations are conducted for three conditions, that is, stack effect only, pressurization only and stack effect plus pressurization. Results including the detailed pressure field and flow rate at each floor are represented and the stack effect are effectively visualized. Meanwhile, the pressure of stairwell is increased as much as the summation of the stack effect and pressurization, and the problem induced by rise of pressure is pointed out.

A Comparative Study on Domestic and Foreign Standards for Air Supply for the Improvement of a Smoke Control System for High-Rise Buildings (국내 고층건축물의 제연설비 성능 개선을 위한 국내·외 급기량 관련 기준 비교연구)

  • Kim, Hye-Won;Lee, Byeong-Heun;Jin, Seung-Hyeon;Lee, Su-Gak;Kim, Jung-Yup;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In South Korea, smoke control systems are designed according to the fire safety standards NFSC501 and NFSC 501A. However, there is a problem in that the design values are incompatible when measuring the performance of the system after the design construction for calculating the leakage crack area described in the standards. Therefore, we compared the standards for smoke control systems from South Korea, Japan, and the United Kingdom. In South Korea, designs are conducted uniformly according to the NFSC 501A Manual, but in Japan and the United Kingdom, designs consider smoke temperature, duct loss, and fire floor air supply. Furthermore, they use larger values than in South Korea.

Study of the Effective Fire and Smoke Control in Deep Underground Tunnel with Transverse Ventilation (대심도 터널 화재 시 균일배기 환기방식에서의 최적배연 연구)

  • Kim, Jong-Yoon;Lim, Kyung-Bum;Jeon, Yong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • This study represents the effective fire and smoke control in the case of fire in deep underground tunnels, even if the exhaust system can be calculated, the optimal smoke capacity can be determined by establishing technical standards for the transverse ventilation system focusing on the design as a basis for deriving the parameters for utilization. Numerical analyses were performed using the FDS program as a function of the unsteady flow in a deep underground tunnel fire. The analysis results were calculated within 250 m smoke using an inside wind velocity of 0m/s when the capacity of smoke was exhausted, $80m^3/s$, whereas in case of an internal wind velocity of 3m/s, the capacity of smoke exhaust was $197.1m^3/s$, showing an approximately 2.5 fold increase.

Development of Pressure Differential Smoke Control System for Separating the Leakage Air Flow and the Supplementary Air Flow (분리급기형 급기가압 제연시스템 개발)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.310-313
    • /
    • 2011
  • 국내에서 고층건물의 제연시스템으로 급기가압 제연시스템이 일반적으로 사용되고 있는데, 기존의 급기가압 제연시스템의 설계방안과 같이 한개의 급기풍도를 통해 누설량과 보충량이 동시에 공급될 경우에는 부속실과 옥내간에 형성되는 차압이 설계기준에 미달하거나 과압이 될 가능성이 매우 높아져서 급기가압 제연시스템의 설치목적을 달성하지 못할 수 있다. 이에 대한 개선방안으로 본 연구에서는 누설량의 공급과 보충량의 공급을 각기 다른 유로를 통해 수행하는 방안 및 장치구성을 제시함으로서 고층건물에서 화재 발생시 안전한 피난환경을 제공하고자 한다.

  • PDF

A Study on the Effectiveness to the Life Safety by Enlarging Smoke Vent Size and/or Sprinklered System (배연창 크기와 스프링클러 작동이 인명안전에 미치는 영향 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan;Lim, Choe-Hyun;Kim, Bum-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • Recently, evacuation safety of a resident of building become the major concern, because building has been higher and more complicated. Buildings in Korea should install the natural smoke venting or mechanical smoke exhaust equipment according to the building law. The smoke control is the most important to guarantee the evacuation safety. This study evaluate the influence to the height and temperature of smoke layer by enlarging smoke vent size and operating sprinkler system using CFAST (Version 6). Smoke venting size is larger, the effect to height and temperature of smoke layer is increased in below 5 MW fire. But, the correlation of these is decreased in above 10 MW fire. The case that opened smoke vent and sprinklered are applied, life safety criteria are satisfied regardless of fire size. After design the fire scenario according to the service and size of building. Install the smoke vent suitable for the fire size and verify that by experiment or simulation.

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.