• Title/Summary/Keyword: Smoke control system

Search Result 234, Processing Time 0.041 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

System of gas sensor for conbinating wire and wireless using Internet of Things (IOT기술을 이용한 유무선 통합 가스검출 시스템 구현)

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • This study concerns the integrated gas sensor system of wire and wireless communication by using IoT(Internet of Things) technology. First, communication part is that it delivers the detection information, which transferred by wire or wireless communication and required control procedure based on a wireless module that receives the gas leakage information from wired or wireless detector, to administrator or user's terminal. Second, receiver part is that it shows the location and information, which received from the wired detector formed by a detecting sensor's node as linking with the communication part, and transfers these to the communication part. Third, wireless detector formed as a communication module of a detecting sensor node is that it detects gas leakage and transfers the information through wireless as a packet.Fourth, wired detector communicated with the receiver part and formed as a communication module of a detecting sensor node is that it detects gas leakage, transfers and shows the information as a packet. Fifth, administrator's terminal is that it receives gas leakage information by the communication part, transfers the signal by remote-control, and shut off a gas valve as responding the information. Sixth, database is that it is connected with the communication part; it sets and stores the default values for detecting smoke, CO., and temperature; it transfers this information to the communication part or sends a gas detecting signal to user's terminal. Seventh, user's terminal is that it receives each location's default value which stored and set at the database; it manages emergency situation as shutting off a gas valve through remote control by corresponding each location's gas leakage information, which transferred from the detector to the communication part by wireless.It is possible to process a high quality data regarding flammable or toxic gas by transferring the data, which measured by a sensor module of detector, to the communication part through wire and wireless. And, it allows a user to find the location by a smart phone where gas leaks. Eventually, it minimizes human life or property loss by having stability on gas leakage as well as corresponding each location's information quickly.

Carbonization Patten and Operation Characteristics of a 1Φ 2 W MCCB Damaged by PCITS (PCITS에 의해 소손된 1Φ 2 W MCCB의 탄화 패턴 및 작동 특성)

  • Lee, Jae-Hyuk;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2014
  • The purpose of this study is to analyze the damage pattern when overcurrent is applied to a thermal magnetic type molded case circuit breaker (MCCB) using a Primary Current Injection Test System (PCITS). When an overcurrent of 150 A was applied to the PCITS for 5 seconds with the trip bar of an MCCB being damaged, it was found that the surface of the temperature control device (bimetallic strip) positioned at the right was significantly carbonized. When an overcurrent of 300 A was applied to the PCITS for 5 s under the same conditions, the entire temperature control device was deteriorated, becoming flattened and in close contact with the MCCB. When an overcurrent of 450 A was applied to the PCITS for 5 s, the coil of the temperature control device was melted and disconnected. In addition, it was observed that the contacts, the enclosure and upper cover were deformed and there was a trace of carbonization on them. When approximately 3 s had elapsed after an overcurrent of 600 A was applied, white smoke occurred inside the MCCB and a flame was radiated out, after which the overcurrent supply stopped with "phutt" (whomp) sound. It was observed that when the same type of MCCB is damaged by a general flame, the surfaces of its handle, terminal, arc divider (extinguisher) and temperature control device were carbonized uniformly. In addition, it was found that the trip bar of the operating mechanism was melted down and the metal operation pin was moved while being tripped.

An analysis study for reasonable installation of tunnel fire safety facility (터널 방재설비의 합리적 설치를 위한 분석적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Park, Byoung-Jik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.243-248
    • /
    • 2015
  • Domestic road and railroad construction have been increasingly growing and for reasons of mitigating traffic congestion, urban plan and refurbishment project, deeper and longer tunnels have been built. The event of fire is the most fatal accident in a tunnel, and it can be very disastrous with a high possibility. In this study, QRA (Quantitative Risk Analysis) which is one of quantitative risk analysis approaches was applied to tunnel fire safety design and the evaluation of QRA cases and the cost comparison of QRA methods were carried out. In addition analysis of risk reduction effect of tunnel fire safety system was conducted using AHP (Analytic Hierarchy Process) and the priority of major factors that could mitigate the risk in tunnel fire was presented. As a result, significant cost reduction effect could be obtained by incorporating QRA and it is expected to design fire safety system rationally. The priority of fire safety system based on risk mitigation effect by fire safety system considering the cost is in order of water pipe, emergency lighting, evacuation passage and smoke control system.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

A study on the location of fire fighting appliances in cargo ships (화물선 소화설비 비치에 대한 연구)

  • Ha, Weon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.852-858
    • /
    • 2016
  • To safeguard the accommodation spaces on cargo ships from fire, structural fire protection provisions introduced by SOLAS and these measures retard the propagation of flames and smoke. SOLAS also specifies provisions for fire fighting drills. These provisions are a combination of regulations regarding structure and equipment and those dealing with the human element for the fire protection and effective responses in the event of fire. Requirements related to the human element play a supporting role to the requirements for structure and equipment because the present accommodation structure and equipment are insufficient for extinguishing a fire, therefore, fire-extinguishing activity performed by crew members is essential. To reduce human error and ensure effective fire fighting, it is necessary to install a fire-fighting system and improve the fire fighting process. The fundamental concept of fire fighting exercises is to commence fire fighting before the fire grows too big to extinguish. It is essential to relocate the storage place of fire fighting equipment to expedite the fire-fighting exercise. This study was carried out to reduce human risk for this purpose, the fire control station was relocated to a site that could be accessed from the open deck. Further, two sets of a fire fighter's outfit were stored at the same site. This relocation eliminated the risk of the crew reentering to operate the fire fighting system in the fire control station and allowed the crew to pick up the fire fighters' outfits quickly in the event of a fire. In addition, it was proposed that the IIC method be made mandatory. This method is combination of automatic fire detection system and sprinkler system which can reduce the risk of the fire fighting exercises for the crew and to suppress fire in the initial stage. This study was carried out to provide a foundation to the possible amendment of the relevant SOLAS regulations and national legislation.

Study on Stagnation Factors Analysis and Improvement Methods through an Evacuation Experiment (피난실험을 통한 피난시간 지연요인 분석과 개선방안에 관한 연구)

  • Han, Woon-Hee
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • The most urgent requirement in the event of disaster and fire in a skyscraper is to establish a system that enables people inside to evacuate safely. Hence, a practical direction needs to give evacuees confidence in the evacuation by reducing the psychological anxiety caused by the relatively large number of people inside and at the same time, the physically prolonged evacuation travel line. Evacuation tests with large numbers of people were conducted three times to solve these challenges and identify phenomena and issues that occurred during the experiment. The results revealed the factors that could cause a delay in evacuation and suggested improvements. The study results of this paper are as follows. First, a recent fire at a multipurpose high-rise resulted in a number of casualties due to a lack of experience with the disaster prevention system. To prevent such cases from occurring in advance, adaptability was achieved by conducting evacuation tests. Second, the data collected in the evacuation simulation statistics and the actual escape drills were compared and analyzed. Third, in the evacuation experiment, a large number of people could not participate in the experiment. The reasons for not participating were analyzed and their impact on the actual evacuation time was confirmed. Fourth, equipment aids were purchased to establish the optimal response measure to the causes of a delay in escape time and the standards for ensuring the safety of the evacuee were specified by developing improvements to minimize the evacuation delay time through comparative before and after analysis of the experiment. These results can be used for fire safety control of skyscrapers to improve the efficiency of evacuation.

A Study on the Application of the Regulation of the Interior Materials in Entertainment Occupancy (다중이용업소의 내장재 규정의 적용에 관한 연구)

  • 이주헌;윤명오;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.100-107
    • /
    • 2001
  • A Interior material, a main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Nonetheless, it has been used recklessly with undue attention to its contribution to fire in particular in entertainment occupancy and causes many victims in fire. Therefore, this study attempts to examine the current use of interior material in Korea and find out what to be improved and enhanced in terms of related regulations. Based on the comparison and analysis of the Korea regulation with those of advanced nations, suggestions are made for an effective and efficient improvement and complement to the current system. What can be suggested from this study are as follows. The use of interior material should be controlled under the unified regulation of fire-safety codes. Code should be set up so that the current construction enforcement should be applied in retroactive to those entertainment buildings that obtained a license prior to the implementation of the system certifying that the building is fire-resistant and fire-protective. The legislation should be made to control the fire-protection facilities of small-sized, underground entertainments. It should be obliged to present the blueprint displaying the use of interior material at the time of changing occupancy. Or, it should be compelled to report changes that go way without permit to the administrative office. A compulsory provision should be set up to have a fire-resistant performance to movable furniture. The classification index designating the fire hazard of interior material by flame spread rate and smoke toxicity and its test method should be established.

  • PDF

Alteration of Coagulation and Fibrinolysis System According to Right Ventricular Dysfunction in Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환에서 우심실 기능 부전에 따른 혈액응고 및 섬유소용해계 변화)

  • Kim, Young;Jang, Yoon Soo;Kim, Hyung Jung;Kim, Se Kyu;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kwak, Jin Young;Choi, Jin Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.6
    • /
    • pp.625-630
    • /
    • 2006
  • Background: Pulmonary hypertension in COPD patients is the result of a direct effect of tobacco smoke on the intrapulmonary vessels with the abnormal production of the mediators that control vasoconstriction, vasodilatation, and vascular cell proliferation, which ultimately lead to aberrant vascular remodeling and physiology. COPD patients are prone to the developmint of an acute and chronic thromboembolism with an elevation of the plasma procoagulant and fibrinolytic markers However, the roles of the coagulation and fibrinolysis system on the right ventricular dysfunction in COPD patients are not well defined. We examined the alteration of the coagulation and fibrinolysis system in COPD patients according to the right ventricular function measured using cardiac multidetector computed tomography (MDCT). Methods: The right ventricular ejection fraction (RVEF) was measured using cardiac MDCT in 26 patients who were diagnosed with COPD according to the definition of the GOLD guideline. The plasma level of thrombin antithrombin (TAT) and plasminogen activator inhibitor (PAI)-1 were measured using an enzyme linked immunoassay. Results: The plasma TAT was markedly elevated in COPD patients ($10.5{\pm}19.8{\mu}g/L$) compared with those of the control ($3.4{\pm}2.5{\mu}g/L$) (p<0.01). However, the plasma PAI-1 in COPD patients ($29.6{\pm}20.7ng/mL$) was similar to that in the controls. The plasma TAT showed a significant inverse relationship with the RVEF measured by the cardiac MDCT in COPD patients (r=-0.645, p<0.01). However, the plasma PAI-1 did not show a relationship with the RVEF (r=0.022, p=0.92). Conclusion: These results suggest that the coagulation system in COPD patients is markedly activated, and that the plasma level of TAT might be a marker of a right ventricular dysfunction in COPD patients.