• Title/Summary/Keyword: Smoke Simulation

Search Result 256, Processing Time 0.024 seconds

A Study on the Smoke Control in Pressure Differential Systems (급기가압 제연댐퍼 위치에 따른 방연풍속특성 및 성능개선방안에 관한 연구)

  • Bae, Sang-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.239-244
    • /
    • 2011
  • This study is aimed to develop fundamental technology on the smoke control method by simulation model and scale model simulation technique in pressure differential systems. Thereby, this research aimed to establish design elements and technologies required for smoke control system that is suitable to pressure differential systems of the high-rise buildings in order to minimize the loss of lives and property damage in case of fire.

  • PDF

A Numerical Study on the Smoke Control in Side-Platform Type Subway Station Fires (상대식 지하철 역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 205 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $20\;^{\circ}C$. 20 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the side-platform type subway station in case of a train fire. Temperature and CO concentration were lowered by the operation of smoke extraction system.

A Study on the smoke control in underground space of the buildings (건축물 지하생활공간의 연기제어 기술개발 및 실물모의실험)

  • Bae, Sang-Hwan;Baik, Ki-Seung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.107-110
    • /
    • 2008
  • This study is aimed to develop fundamental technology on the smoke control method by simulation model and scale model simulation technique in underground space. Thereby, this research aimed to establish design elements and technologies required for smoke control system that is suitable to underground spaces of the high-rise residential-commercial and office buildings in order to minimize the loss of lives and property damage in case of fire.

  • PDF

A Numerical Study on the Smoke Control in Center-Platform Type Subway Station Fires (섬식 지하철역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.313-318
    • /
    • 2007
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 145 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $10^{\circ}C$. 10 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the center-platform type subway station in case of a kiosk fire. Temperature and CO concentration were lowered by the operation of smoke extraction system. But, the operation of fire shutters had little effect on temperature and CO concentration in the platform level.

Analysis of Smoke Spread Effect Due to The Fire Location in Underground Subway-Station (대심도 역사의 화재위치에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Jin-Ho;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2885-2890
    • /
    • 2011
  • Simulation study were performed for fire location effect on the smoke spread in the deeply-underground subway station(DUSS). In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread effect with the different fire location. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire location. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and LES(large eddy simulation) method in FDS code was adopted.

  • PDF

Large Eddy Simulation of Fire and Smoke Control in a Compartment with Large Openings (큰 개구부가 있는 공간의 화재와 제연의 대와류모사)

  • 박외철
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • A 50 kW polyurethane fire in a compartment of 4 m ${\times}$ 1 m ${\times}$ 1.5m with large openings similar to a subway station was simulated by a large eddy simulation to investigate the fire and smoke control. The NIST FDS, which employed a mixture fraction combustion model and a finite volume method for radiation, was utilized. Distribution of temperature and smoke particles was compared with in the lower and upper corridors for three different smoke control systems, ventilation, purge, and extraction, starting in 5 sec from the ignition of the fire. For the given geometries, the ventilation system showed the best smoke removal rate and lowest temperature distribution in the both corridors. It was confirmed that the purge system is not recommended for a subway station since the smoke removal rate of the purge system was worse than that without a smoke control system.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

A Study on the Design of Evacuation Route at Subway Station Using Simulation Analysis (Simulation 분석을 통한 지하철 역사 피난동선 설계 방안에 관한 연구)

  • Ham, Eun-Gu;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Since subway fire disaster at Daegu, Korea smoke control system and passengers evacuation distance has been focused to reform. Existing smoke control facilities need to expand volume of ventilation capacity however, the complicate subway station structure can hardly react dispersion of smokes from massive subway cabin fire. Smoke flow at platform level move upward thought vertical stairway and passengers evacuation goes with same direction. The victims of evacuees from subway station fire mainly due to exposure of heat radiation and smoke. The study demonstration the effect of downward evacuates stairway system by separating evacuation route to smoke movement pass way including saving times of evacuation.

A Numerical Simulation of Smoke Control in Daegu Subway Stations II. Air Flowrate of Extraction System (대구 지하철역 제연의 문제점과 대책 II. 배기방식 제연설비의 풍량)

    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.105-110
    • /
    • 2003
  • In Part II, the temperature and smoke particle distributions of the extraction system, which yielded the best smoke removal performance among the three smoke control systems in Part I, for extraction flowrates of 0.6∼2.4 ㎥/s and two fire sizes of 200 ㎾ and 2 ㎿ were presented. The same numerical method was utilized to the same computational domain and configurations as Part I. It was shown that the extraction flowrate affects the smoke control performance significantly, and that a similar trend in improving the smoke removal performance with the increasing extraction flowrate between the two fire sizes. An extraction flowrate of 2.4 ㎥/s or higher was required for the temperature in the escape route less than $^{\circ}C$ for the given situations.

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.