• Title/Summary/Keyword: Smoke Removal

Search Result 72, Processing Time 0.022 seconds

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

A Study on Smoke Movement by Using Large Eddy Simulation II. Smoke Control Systems and Opening Size (대와류모사를 이용한 연기이동의 연구 II. 제연방식과 개구부의 크기)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.34-38
    • /
    • 2003
  • The large eddy simulation based Fire Dynamics Simulator was utilized to investigate the effects of the size of an opening on smoke removal performance for the three smoke control systems-ventilation purge, and extraction. Three different opening sizes, $r_A$=1, 2, and 3 were investigated while the flow rate remained 0.75 $m^3/s$ at the inlet or outlet depending on the systems. Increase of the opening size did not give a significant difference in the smoke removal rate for the three smoke control systems, though the increasing opening size slightly improved smoke removal. The extraction system was shown the best smoke control system, and the purge system yielded low performance compared to the other two systems for all the different opening sizes.

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

Removal Efficiency of Harmful Substances in Side-stream Tobacco Smoke by the Doping Components of Commercial TiO2 Photocatalysts (시판용 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기의 유해물질 제거효율)

  • Kim, Tae-Young;Cho, Yeong-Tae;Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.565-570
    • /
    • 2017
  • Tobacco smoke emitted during smoking is divided into a main-stream and side-stream smoke. Most of the tobacco smoke that spreads to a room while smoking is a side-stream one. The side-stream tobacco smoke is two to three times more harmful than that of the main-stream tobacco smoke. In this study, the removal efficiency of CO, $H_2S$, $NH_3$ and HCHO in a side-stream tobacco smoke using the doping component of $TiO_2$ photocatalysts was confirmed. As a result, CO was removed up to 78.37%, which indicated that the $TiO_2$ photocatalytic process is effective for CO removal. Also, the removal efficiencies of CO, $H_2S$ and HCHO were greatly affected by the amount of doped O and Si components of the $TiO_2$ photocatalyst. In conclusion, the more doped O and Si components had, the higher removal efficiencies of harmful substances were achieved.

A Numerical Study on Smoke Control for Smoke Control Systems and Air Flowrate (제연방식과 풍량에 따른 제연성능의 수치적 연구)

  • 박외철
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • The smoke removal rate from a room with an opening was investigated for different smoke control systems by using the large eddy simulation turbulence model of the Fire Dynamics Simulator. The decreasing rate of the particles randomly distributed in the 2m X 2m X 2.4m room was com-pared for the ventilation system, pressurization system and extraction system, and for the air flowrate of the ventilation system. Difference in the smoke removal rate among the three smoke control systems was small when the opening was closed. The pressurization system showed less smoke removal rate than the other two systems when the opening existed, and hence is not recommended for subway stations with large openings. It was also shown that a less flowrate in the ventilation system leads to a much longer smoke removal time.

Smoke Removal Effect by Water Mist Spraying (미분무수 분사의 제연효과)

  • Park, Tae-Sung;Kong, Ha-Sung;Kim, Myung-Chul
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.43-47
    • /
    • 2015
  • Water mist was sprayed on small compartment areas filled with smoke that formed from two different combustibles. The water-mist injection pressure and time were varied, and changes in the light extinction coefficient were measured over time. The smoke removal effect was analyzed with a light sensing smoke meter in different experimental conditions. Using the meter, the changes in smoke density were converted to changes in DC voltage over time to obtain the changes in the light extinction coefficient. The water mist was more effective in eliminating the smoke formed from glowing compared to flaming combustion. The smoke removal effect was significantly better with greater injection pressure and injection time.

Effect of Adsorbent Pore Characteristics on the Removal Efficiency of Smoke Components. (흡착제 세공 특성이 담배연기성분 제거에 미치는 영향)

  • 이영택;김영호;신창호;임광수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • The adsorption efficiency of some adsorbents for the organic solvents and gas phase of smoke was investigated. 1. Specific surface area of activated carbon increased to 1900 mfg with increased activation time. 2. Adsorption efficiency of benzene and acetone increased with increasing total surface area. Adsorption capacity for gas phase such as hydrogen cyanide, aldehyde was proportional to the micro pore surface area under 20A. 3. The removal efficiency of particulate matter of smoke was higher with the adsorbents of relatively higher pore size compared to that of micro pore.

  • PDF

A Numerical Simulation of Smoke Control in Daegu Subway Stations II. Air Flowrate of Extraction System (대구 지하철역 제연의 문제점과 대책 II. 배기방식 제연설비의 풍량)

    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.105-110
    • /
    • 2003
  • In Part II, the temperature and smoke particle distributions of the extraction system, which yielded the best smoke removal performance among the three smoke control systems in Part I, for extraction flowrates of 0.6∼2.4 ㎥/s and two fire sizes of 200 ㎾ and 2 ㎿ were presented. The same numerical method was utilized to the same computational domain and configurations as Part I. It was shown that the extraction flowrate affects the smoke control performance significantly, and that a similar trend in improving the smoke removal performance with the increasing extraction flowrate between the two fire sizes. An extraction flowrate of 2.4 ㎥/s or higher was required for the temperature in the escape route less than $^{\circ}C$ for the given situations.

A study on the selection of the optimal smoke control mode in train platform through quantitative risk assessment (정량적 위험도 평가를 통한 열차 승강장 화재시 최적 제연모드 선정에 관한 연구)

  • Lee, Bo-Hoon;Hong, Seo-Hee;Baek, Doo-San;Lee, Ho-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.539-552
    • /
    • 2022
  • In the case of train stations, due to the specificity of underground spaces with limited smoke emissions, if appropriate removal equipment is not equipped, the damage caused by fire smoke may increase in the event of a fire. As a result, the need for measures to ensure the safety of evacuation of underground stations has been highlighted, and research for safe evacuation of platform users in case of fire is continuously being conducted at home and abroad. However, although the smoke removal area is currently divided by smoke boundary walls and platform screen doors (PSD) and installed in the train platform, standards for smoke removal methods (air supply or exhaust) for each fire removal area, that is, smoke removal mode, are not presented. In this study, fire analysis and evacuation analysis were performed to estimate the number of deaths and to derive F/N guidance in order to quantitatively evaluate the fire risk according to the fire station fire, and the total risk was the lowest in the case of fire area exhaust and supply to adjacent areas.

Image-based fire area segmentation method by removing the smoke area from the fire scene videos (화재 현장 영상에서 연기 영역을 제외한 이미지 기반 불의 영역 검출 기법)

  • KIM, SEUNGNAM;CHOI, MYUNGJIN;KIM, SUN-JEONG;KIM, CHANG-HUN
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • In this paper, we propose an algorithm that can accurately segment a fire even when it is surrounded by smoke of a similar color. Existing fire area segmentation algorithms have a problem in that they cannot separate fire and smoke from fire images. In this paper, the fire was successfully separated from the smoke by applying the color compensation method and the fog removal method as a preprocessing process before applying the fire area segmentation algorithm. In fact, it was confirmed that it segments fire more effectively than the existing methods in the image of the fire scene covered with smoke. In addition, we propose a method that can use the proposed fire segmentation algorithm for efficient fire detection in factories and homes.