• Title/Summary/Keyword: Smoke Detection

Search Result 191, Processing Time 0.026 seconds

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor (고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구)

  • Kim, Sangmin;Kim, Mintaek;Song, Soonho;Baek, Gookhyun;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-69
    • /
    • 2014
  • Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.

Tracking Method of Dynamic Smoke based on U-net (U-net기반 동적 연기 탐지 기법)

  • Gwak, Kyung-Min;Rho, Young J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.81-87
    • /
    • 2021
  • Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.

Image Registration and Fusion between Passive Millimeter Wave Images and Visual Images (수동형 멀리미터파 영상과 가시 영상과의 정합 및 융합에 관한 연구)

  • Lee, Hyoung;Lee, Dong-Su;Yeom, Seok-Won;Son, Jung-Young;Guschin, Vladmir P.;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.349-354
    • /
    • 2011
  • Passive millimeter wave imaging has the capability of detecting concealed objects under clothing. Also, passive millimeter imaging can obtain interpretable images under low visibility conditions like rain, fog, smoke, and dust. However, the image quality is often degraded due to low spatial resolution, low signal level, and low temperature resolution. This paper addresses image registration and fusion between passive millimeter images and visual images. The goal of this study is to combine and visualize two different types of information together: human subject's identity and concealed objects. The image registration process is composed of body boundary detection and an affine transform maximizing cross-correlation coefficients of two edge images. The image fusion process comprises three stages: discrete wavelet transform for image decomposition, a fusion rule for merging the coefficients, and the inverse transform for image synthesis. In the experiments, various types of metallic and non-metallic objects such as a knife, gel or liquid type beauty aids and a phone are detected by passive millimeter wave imaging. The registration and fusion process can visualize the meaningful information from two different types of sensors.

ICT Medical Service Provider's Knowledge and level of recognizing how to cope with fire fighting safety (ICT 의료시설 기반에서 종사자의 소방안전 지식과 대처방법 인식수준)

  • Kim, Ja-Sook;Kim, Ja-Ok;Ahn, Young-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2014
  • In this study, ICT medical service provider's level of knowledge fire fighting safety and methods on coping with fires in the regions of Gwangju and Jeonam Province of Korea were investigated to determine the elements affecting such levels and provide basic information on the manuals for educating how to cope with the fire fighting safety in medical facilities. The data were analyzed using SPSS Win 14.0. The scores of level of knowledge fire fighting safety of ICT medical service provider's were 7.06(10 point scale), and the scores of level of recognizing how to cope with fire fighting safety were 6.61(11 point scale). level of recognizing how to cope with fire fighting safety were significantly different according to gender(t=4.12, p<.001), age(${\chi}^2$=17.24, p<.001), length of career(${\chi}^2$=22.76, p<.001), experience with fire fighting safety education(t=6.10, p<.001), level of subjective knowledge on fire fighting safety(${\chi}^2$=53.83, p<.001). In order to enhance the level of understanding of fire fighting safety and methods of coping by the ICT medical service providers it is found that: self-directed learning through avoiding the education just conveying knowledge by lecture tailored learning for individuals fire fighting education focused on experiencing actual work by developing various contents emphasizing cooperative learning deploying patients by classification systems using simulations and a study on the implementation of digital anti-fire monitoring system with multipoint communication protocol, a design and development of the smoke detection system using infra-red laser for fire detection in the wide space, video based fire detection algorithm using gaussian mixture mode developing an education manual for coping with fire fighting safety through multi learning approach at the medical facilities are required.

Association of Methylation of the RAR-β Gene with Cigarette Smoking in Non-Small Cell Lung Cancer with Southern-central Chinese Population

  • Li, Wen;Deng, Jing;Wang, Shuang-Shuang;Ma, Liang;Pei, Jiang;Zeng, Xiao-Xi;Tang, Jian-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10937-10941
    • /
    • 2015
  • Pathogenesis of lung cancer is a complicated biological process including multiple genetic and epigenetic changes. Since cigarette smoking is confirmed as the most main risk factor of non-small cell lung cancer (NSCLC), the aim of this study was to determine whether tobacco exposure plays a role in gene methylation. Methylation of the RAR-${\beta}$ gene were detected using methylation-specific polymerase chain reaction in DNA from 167 newly diagnosed cases with NSCLC and corresponding 105 controls. A significant statistical association was found in the detection rate of the promoter methylation of RAR-${\beta}$ gene between NSCLC and controls ($x^2$=166.01; p<0.01), and hypermethylation of the RAR-${\beta}$ gene was significantly associated with smoking status (p=0.038, p<0.05). No relationship was found between RAR-${\beta}$ gene methylation and pathologic staging including clinical stage, cell type, gender and drinking (p>0.05), and the methylation of RAR-${\beta}$ gene rate of NSCLC was slightly higher in stages III+IV (80.0%) than in I+II (70.8%). Similar results were obtained for methylation of the RAR-${\beta}$ gene between squamous cell carcinoma (77.9%) and other cell type lung cancer (73.9%). These results showed that the frequency of methylation increased gradually with the development of clinical stage in smoking-associated lung cancer patients, and tobacco smoke may be play a potential role in RAR-${\beta}$ gene methylation in the early pathogenesis and process in lung cancer, particularly squamous cell carcinoma. Aberrant promoter methylation is considered to be a promising marker of previous carcinogen exposure and cancer risk.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

System of gas sensor for conbinating wire and wireless using Internet of Things (IOT기술을 이용한 유무선 통합 가스검출 시스템 구현)

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • This study concerns the integrated gas sensor system of wire and wireless communication by using IoT(Internet of Things) technology. First, communication part is that it delivers the detection information, which transferred by wire or wireless communication and required control procedure based on a wireless module that receives the gas leakage information from wired or wireless detector, to administrator or user's terminal. Second, receiver part is that it shows the location and information, which received from the wired detector formed by a detecting sensor's node as linking with the communication part, and transfers these to the communication part. Third, wireless detector formed as a communication module of a detecting sensor node is that it detects gas leakage and transfers the information through wireless as a packet.Fourth, wired detector communicated with the receiver part and formed as a communication module of a detecting sensor node is that it detects gas leakage, transfers and shows the information as a packet. Fifth, administrator's terminal is that it receives gas leakage information by the communication part, transfers the signal by remote-control, and shut off a gas valve as responding the information. Sixth, database is that it is connected with the communication part; it sets and stores the default values for detecting smoke, CO., and temperature; it transfers this information to the communication part or sends a gas detecting signal to user's terminal. Seventh, user's terminal is that it receives each location's default value which stored and set at the database; it manages emergency situation as shutting off a gas valve through remote control by corresponding each location's gas leakage information, which transferred from the detector to the communication part by wireless.It is possible to process a high quality data regarding flammable or toxic gas by transferring the data, which measured by a sensor module of detector, to the communication part through wire and wireless. And, it allows a user to find the location by a smart phone where gas leaks. Eventually, it minimizes human life or property loss by having stability on gas leakage as well as corresponding each location's information quickly.

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

Detection of Urinary 8-Hydroxyguanine Adduct as Exposure Biomarker for Oxidative Stress (산화적스트레스에 대한 노출척도로서 뇨중 8-Hydroxyguanine Adduct의 측정)

  • 유아선;김윤신;모인필;마응천;조명행
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 1998
  • Oxidative stress by reactive oxygen species (ROS) damages cellular DNA, RNA, proteins, lipids and others causing various diseases such as cancer, arthritis, and heart diseases. 8-Hydroxyguanine (8-OHG) is one of the products formed from DNA or RNA damaged by ROS. Since high amounts of 8-OHG can be excreted in urine, it may serve as a potential biomarker indicating the level of oxidative damage to nucleic acids. Residents in industrial area with severe air pollution are expected to be affected by higher level of oxidative stress from pollutants like polyaromatic hydrocarbons (PAHs), etc. Smokers are also expected to be damaged by higher level of oxidative stress from cigarette smoke components like PAHs than non-smokers. To examine if the determination of the urinary concentration of 8-OHG could be used as exposure biomarker for the oxidative stress caused by air-pollutants, this study was performed to determine and compare the urinary concentrations of 8-OHG in smokers and non-smokers, or non-polluted area residents and polluted area residents. Urine samples were collected and purified by a strong cation exchange and cellulose partition column, then analyzed by HPLC with electrochemical detector at 600 ㎷ potential. Concentrations of urinary 8-OHG in non-smokers and smokers of Seoul area college male students were determined as 15.12$\pm$9.68 (ng/mg creatinine) and 34.72$\pm$11.72 (ng/mg creatinine), respectively, showing significantly higher level of 8-OHG in smokers than in non-smokers. Urine samples of elementary school students were collected from Sokcho area, which is known to be non-polluted, and 3 representative polluted areas; Yocheon industrial area, Ulsan urban and Ulsan industrial area. The concentrations of 8-OHG in these samples were 12.42$\pm$8.27 (ng/ mg creatinine, Sokcho), 22.55$\pm$9.12 (ng/mg creatinine, Yocheon), 17.41$\pm$2.30 (ng/mg creatinine, Ulsan urban), 55.04$\pm$39.73 (ng/mg creatinine, Ulsan industrial). Thus, samples from polluted area tend to have higher level of 8-OHG and the levels of Yocheon and Ulsan industrial area were significantly higher than that of Sokcho area. The results indicate that the residents of polluted industrial area or smokers are more severely exposed to oxidative stress probably caused by air pollutants like PAHs. Thus, the determination of urinary 8-OHG concentration could be used as biomarker for the extent of body exposure to oxidative stress caused by various pollutants.

  • PDF

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF