• Title/Summary/Keyword: Smectite

Search Result 206, Processing Time 0.032 seconds

Microstructural Features and K-Ar Ages of Fault Gouges from Quaternary Faults along the Northern Yangsan Fault, SE Korea

  • Chang Oh Choo;Tae Woo Chang;Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.121-136
    • /
    • 2023
  • Microstructural characterization, identification of mineral assemblages, and K-Ar age dating of fault gouges from five Quaternary fault sites segmented along the northern Yangsan Fault, SE Korea were performed to understand formation condition and multiple activity of faults. The mean and median sizes of particles of bulk gouges vary among the studied faults: 1.75 ㎛ and 1.43 ㎛ for the Danguri Fault, 1.94 ㎛ and 1.79 ㎛ for the Yukjae Fault, 5.57 ㎛ and 4.16 ㎛ for the Yugye Fault, and 5.55 ㎛ and 2.31 ㎛ for the Bogyeongsa Fault. Fault gouges contain abundant secondary minerals, including smectite, chlorite, illite, kaolinite, laumontite, and mordenite, which are found in association with quartz and feldspar. K-Ar dating of the fault gouges (both bulk samples and separate size fractions) yields ages ranging from 59.1 to 18.8 Ma, with bulk ages of 47.6 Ma for the Yukjae Fault, 59.1 Ma for the Ansim Fault, 39.4 Ma for the Yugye Fault, and 22.6 Ma for the Bogyeongsa Fault. The finer fractions generally have younger K-Ar ages compared with the coarser fractions, and the finest fraction (<0.2 ㎛) is the youngest for each fault. Hydrothermal alteration of the gouges is considered to have occurred under low-temperature (100~200℃) conditions during faulting. Microstructural features and clay mineral assemblages of fault gouges and brecciated rocks should be considered when interpreting fault events and reactivation, in addition to age dating of faulting.

Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea (동해 울릉분지와 후포분지 해양 퇴적물 코어의 광물학적 특성)

  • Lee, Su-Ji;Kim, Chang-Hwan;Jun, Chang-Pyo;Lee, Seong-Joo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-81
    • /
    • 2015
  • This study was carried out in order to investigate the mineralogical characteristics of the core sediments (03GHP-02 and HB13-2), obtained from the Ulleung Basin and Hupo Basin, Korea. The results on mineral compositions, clay mineral compositions, and the total contents and sequential extraction of different fractions of the phosphorus in core samples showed that those values are different in two cores and also at different depths. In both samples, mineral compositions were the same, composed mainly of quartz, microcline, albite, calcite, opal A, pyrite, and clay minerals (illite, chlorite, kaolinite, and smectite). However, the sample from Hupo Basin contains more opal A. Both samples, especially the ones from Hupo Basin contains more smectite than those reported from East Sea, indicating the influence of paleo-Hwangwei River and the Tertiary Formation of Korea Peninsula. For the samples from Uleung Basin, at 0.7-3.5 m range in depth, the low content of opal A and the low illite crystallinity index can be inferred to indicate the relatively cool climate, corresponding to the ice age. Also, the content of total phosphorus was low in those samples. It was reported that East Sea at that time was isolated from the neighboring seas due to the decrease of the sea level, and as a result, the influx of sediments was supposed to be little through the strait and rivers. For the samples from Hupo Basin, there is no significant changes in clay mineral composition and the distribution of phosphorus with increasing depth. This little change can be interpreted to indicate that the sediments comprising the core might be deposited in a relatively short period of time or deposited in sedimentary environment in which there's no significant changes in sediment supplies. The values of crystallinity index of clay minerals are high in those samples, indicating that it was relatively warm during that time. Although the increase of fluctuation pattern can be observed, showing that the climate of this period often changed, it is supposed that it was generally warm.

Origin of B, Br and Sr in Groundwater from Bukahn-myeon, Yeongcheon, Gyeongbuk Province, with Emphasis on Hydrochemistry (지하수의 수질화학적 특징과 붕소, 브롬, 스트론튬 성인에 대한 고찰)

  • Choo, Chang-Oh;Lee, Jin-Kook;Lee, Chang-Joo;Park, Ki-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.235-250
    • /
    • 2009
  • Environmental elements such as B, Br, and Sr in groundwater from Bukahn-myeon, Yeongcheon, Gyeongbuk Province, were investigated in order to know their origin with emphasis on hydrochemistry. pH ranges from 7.37 to 8.39. B content is 0.41${\sim}$4.62 mg/L with an average 1.74 mg/L and Br content is 0${\sim}$3.24 mg/L with an average 2.22 mg/L, and Sr content is 0.93${\sim}$8.64 mg/L with an average 2.76 mg/L. The water types plotted by the Piper diagram are different but mostly $Ca-HCO_3$. Some constituents contributing to EC are Na, $SO_4$, Cl with high determinative coefficients($R^2$) of 0.85, 0.70, 0.90, respectively. The coefficients($R^2$) of Cl to Na, K, $SO_4$ are 0.54, 0.68, 0.53, respectively. It should be noted that there are high cocfficients($R^2$) of B-Sr and $Sr-SO_4$ with 0.65, 0.64, respectively. The Cl/Br ratios are 5.21${\sim}$30.70 due to significant depletion of Cl. The $SO_4/Cl$ ratios are 1.32${\sim}$27.24 with an average of 5.92, ascribed to abundant introduction of $SO_4$ or significant depletion of Cl. Chemical speciation calculated shows that B exists mostly as $H_3BO_3$ with less $H_2BO^-_3$ and Br exists as only $Br^-$. Sr exists mostly as $Sr^2$ with less $SO_4$. Saturation index represents that goundwater is supersaturated with respect to barite, kaolinite, illite, K-mica, and smectite while it is slightly undersaturated with respect to silica, gypsum, anhydrite, talc, chrysotile, feldspar, kaolinite, illite, K-mica, and smectite. The saturation index of celestine is -2.23${\sim}$-0.13 indicating more Sr can be incorporated into groundwater. Groundwater is still much undersaturated to halite. It is likely that the origin of S and Sr was related to the Yucheon volcanic rocks. Br might be originated from the local geological features with introduction of anthropogenic matters.

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.

A Study on the Chemical Index of Alteration of Igneous Rocks (화성암의 화학적 변질지수에 관한 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, In-Soo;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2012
  • The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

Sedimentological Characteristics of Surface Sediments in the Southwestern Sea off Cheju Island, Korea (제주도 서남해역의 해저퇴적물 특성)

  • Youn, Jeung-Su;Kim, Soung-Bok;Koh, Gi-Won
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.132-147
    • /
    • 1989
  • A total of 83 surface sediments and 55 sea water samples, collected from the southwestern sea of Cheju Island, were analyzed in order to understand their textural characteristics, geochemical composition and the clay mineralogical features. The sediments were subdivided into ten textural classes, namely clayey sand, slightly gravelly muddy sand, sandy clay, clay and mud. The coarse and fine-grained mixed sediments are distributed in the northern part and around the Island, whereas the fine-grained deposits are mainly distributed in the central and southern parts of the study area; small scale mud patches are distributed in the southwestern and northern parts of Cheju Island. The high concentration of total suspended matter in study area gradually increase toward the southwestern and northwestern offshore area. The concentration of geochemical elements is as follow: the content of Mn, Al, Zn, Cr, Cu and Sn increase toward the southern part which is covered mainly with fine-grained deoposits, whereas the content of Ca, Mg and Ag is higher in the northern area; the elements such as Ni, Na, Fe and Pb are more concentrated relatively in muddy deposits rather than in sandy sediments. The light minerals such as Na-Ca feldspars show a high content around the Socotra Rock, toward the Soheugsan and Cheju Islands, but the K-feldspars are relatively high around the Cheju Island. It was noticed that the provenance of these sediments is partly influenced by the geological characteristics near the island. X-ray diffractogram for clay minerals from the southeastern mud patch and around the Soheugsan Island shows the diagnostic calcite peak indicating that the greater part of these clay fraction may have been derived from present and ancient Hwangho River. The high concentration of smectite in the northern part near the Cheju and around the Soheugsan Islands, eastern side of Socotra Rock probably result from supplies smectite altered from volcanic materials distributed in the Cheju Island and Socotra Rock, whereas the samples near the Chuja and northern parts of the Cheju Island contain weak calcite peak and high concentration of kaolinite and chlorite which is closely related to the geolgical characteristics on the adjacenting land area.

  • PDF

An Experimental Study on Flocculation and Settling of Fine-grained Suspended Sediments (부유물질의 응접작용 및 침전특성에 관한 실험적 연구)

  • Chu, Yong-Shik;Park, Yong-Ahn;Lee, Hee-Jun;Park, Kwang-Soon;Kweon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.40-49
    • /
    • 1999
  • A laboratory flume experiment, using turbulence-generating acryl tank and natural sediments, was conducted to investigate the effects of salinity, concentration of suspended sediment, turbulence and clay minerals on the flocculation and settling of fine-grained suspended sediments. While experiments were run, a sequence of water samples were taken near the bottom of the tank to analyze the variations of size distribution and relative contents of clay minerals. The results of the salinity experiment indicate that median settling velocity ($W_{50}$) increases linearly with salinity. Different settling processes of suspended sediments under variable concentrations appear to be predictable, depending upon the range of the suspension concentration. At concentrations less than 200 mg/l, $W_{50}$ is rarely varied with concentration probably because of the individual--grain settling mode. In the range of 200 to 13,000 mg/l show $W_{50}$ and concentration a good relationship following an empirical formula: $W_{50}=0.45C^{0.44}$. This relationship, however, no longer holds in concentrations exceeding 13,000 mg/l; instead, a more or less reverse one is shown. This result suggests an effect of hindered settling. The turbulence effect is somewhat different from that of concentration. Turbulence accelerates the flocculation and settling susepended sediments at low concentration (200 mg/l), whereas at high concentration turbulence breaks floes down and impedes the settling. Size distribution of suspended sediments sampled near the bottom of the tank tend to be more negatively skewed and leptokurtic in turbulent conditions compared to those in static conditions. The clay mineral analysis from the sequential water samples shows that over time the content of smectite decreases most rapidly with illite remaining concentrated in suspension. This means that smectite, among other clay minerals, plays the most effective role in the flocculation of fine-grained sediment in saline water.

  • PDF

Distribution and properties of intertidal Surface Sediments of Kyeonggi Bay, West Coast of Korea (경기만 조간대 표층퇴적물의 분포와 특성)

  • LEE, CHANG-BOK;YOO, HONG-RHYONG;PARK, KYUNG-SOO
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.277-289
    • /
    • 1992
  • Kyeonggi Bay, a macrotidal coastal embayment in the Yellow Sea coast of central korea, is fringed by vastly developed tidal flats. About 400 surface sediment samples were collected from the intertidal and subtidal zones of Kyeonggi Bay for a study of the sediment distribution pattern and the surface sediment characteristics of this environment. The kyeonggi Bay surface sediment becomes progressively finer in the shoreward direction, from offshore sand to shoreward silty sand and sandy silt. This shoreward-fining trend is repeated again on the tidal flat and, as a consequence, a grain-size break occurs near the low-water line which separates the intertidal area from the subtidal one. The intertidal and subtidal sediments differ from each other in textural characteristics such as mean grain size and skewness and this can be interpreted to result from differences in hydraulic energy and morphology between the two environments. The mineral and chemical compositions of the Kyeonggi Bay sediments are largely controlled by the sediment grain size. Smectite was nearly absent in the clay mineral assemblage of Kyeonggi Bay sediment. The contents of Co, Cu and Ni were high in the Banweol tidal flat, which suggests a continuous process of accumulation of these metals. the intertidal environment appears to respond rapidly to artificial coastal modifications, the effects of which should be taken into consideration when planning a dam construction or coastal reclamation.

  • PDF