• 제목/요약/키워드: Smart vibration control

검색결과 378건 처리시간 0.026초

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

스마트 구조물의 동시다점 진동 취득용 안정화된 광섬유 브래그 격자 센서 시스템의 개발 (Stabilized Bragg grating sensor system for multiplexing vibration sensors of smart structures)

  • 방형준;김대현;홍창선;김천곤
    • 한국항공우주학회지
    • /
    • 제32권5호
    • /
    • pp.50-57
    • /
    • 2004
  • 본 논문에서는 스마트 구조의 건전성 모니터링에 사용하기 위한 고주파 진동 검출용 브래그 격자 센서시스템의 개발에 대해 설명하였다. 하나의 복조기 (demodulator)를 이용하여 복수의 브래그 격자 센서의 신호를 복조화 하기 위해 좁은 파장간격 (FSR) 을 갖는 가변 패브리-폐로 필터를 이용하였으며, 복조화에 사용되는 협대역 필터의 투과 파장을 능동적으로 제어함으로써 브래그 격자 진동센서의 민감도를 항상 최대로 유지하기 위한 센서시스템 안 정화 장치를 개발하였다. 개발된 브래그 격자 센서시스템의 성능 검증을 위해 민감도 측정 시험을 하였으며, 시험결과 평균 2.56 $n{\in}_{mas}/{\sqrt{Hz}}$의 민감도를 얻었다. 최종적으로 다중화된 브래그 격자 센서의 동시다점 진동취득 시험을 실시하여 본 시스템의 유효성을 확인하였다.

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어 (New Approach to Pressure Control of a Impression Cylinder for Roll Coater)

  • 윤소남;함영복;박중호
    • 동력기계공학회지
    • /
    • 제13권3호
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

비 정현파 역기전압을 가지는 EV용 IPMSM의 전향보상 제어기법에 관한 연구 (A Study on Feedforward Compensation Method of IPMSM for EV with Non-sinusoidal BEMF)

  • 박귀열;박정우;안원일;신덕용;정문선;문채주
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.573-578
    • /
    • 2013
  • In the case of the Back EMF voltage contains the harmonics, the motor torque ripple and vibration is occurred by the current pulsation, because IPMSM control algorithm is the model which is assumed that it contains a sinusoidal Back EMF voltage. To improve ride quality, in the case of IPMSM for EV, improving the torque control characteristics is necessary. Therefore, there is a need to minimize the influence of the harmonics. In this paper, the investigation to decrease the current distortion factor has been performed for improving torque control characteristics by applying the non-sinusoidal Back EMF to IPMSM model.

Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach

  • Poplawski, Blazej;Mikulowski, Grzegorz;Pisarski, Dominik;Wiszowaty, Rafal;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.27-35
    • /
    • 2019
  • This paper proposes a quantitative criterion for optimization of actuator placement for the Prestress-Accumulation Release (PAR) strategy of mitigation of vibrations. The PAR strategy is a recently developed semi-active control approach that relies on controlled redistribution of vibration energy into high-order modes, which are high-frequency and thus effectively dissipated by means of the natural mechanisms of material damping. The energy transfer is achieved by a controlled temporary removal of selected structural constraints. This paper considers a short-time decoupling of rotational degrees of freedom in a frame node so that the bending moments temporarily cease to be transferred between the involved beams. We propose and test a quantitative criterion for placement of such actuators. The criterion is based on local modal strain energy that can be released into high-order modes. The numerical time complexity is linear with respect to the number of actuators and potential placements, which facilitates quick analysis in case of large structures.

압전 복합재료 작동기 LIPCA와 단일 PZT의 보 진동 제어 성능 비교 (Actuation Performance of LIPCA and bare PZT at Active Vibration Control of a Cantilever Beam)

  • 아리프 수하리요노;구남서;박훈철;이영재;윤광준
    • 한국항공우주학회지
    • /
    • 제34권3호
    • /
    • pp.60-66
    • /
    • 2006
  • 본 논문에서는 기존에 개발한 압전 복합재료 작동기인 LIPCA가 동적 구조물의 작동기로 적용 가능한지를 평가하였다. 압전 세라믹 층, 탄소/에폭시 층 및 유리/에폭시 층으로 이루어진 LIPCA 작동기는 단일 PZT에 비하여 성능 및 내구성이 크다는 장점이 있다. 성능 평가를 위하여 정적 작동력 실험과 진동 제어 실험을 수행하였다. 알루미늄 보의 한 쪽 면에 LIPCA와 단일 PZT를 각각 보에 부착하고 반대쪽 면에는 변형률 게이지를 부착하였다. 먼저 정적 작동력 실험에서는 작동 전압에 따른 변형률 신호를 등가 작동 모멘트로 환산하여 크기를 비교함으로써 성능을 평가하였다. 진동 제어 실험에서는 스트레인 게이지의 변형률 신호를 PID 제어 알고리듬을 사용하여 보의 자유 진동을 억제하도록 제어 신호를 생성하였다. 진동 신호가 감쇠하는 정도를 나타내는 안정화 시간을 비교함으로써 성능을 평가하였다. 실험 결과 LIPCA가 정적 작동 뿐 아니라 자유 진동 제어에서도 단일 PZT보다 성능이 우수함을 확인하였다.

Modal parameter identification with compressed samples by sparse decomposition using the free vibration function as dictionary

  • Kang, Jie;Duan, Zhongdong
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.123-133
    • /
    • 2020
  • Compressive sensing (CS) is a newly developed data acquisition and processing technique that takes advantage of the sparse structure in signals. Normally signals in their primitive space or format are reconstructed from their compressed measurements for further treatments, such as modal analysis for vibration data. This approach causes problems such as leakage, loss of fidelity, etc., and the computation of reconstruction itself is costly as well. Therefore, it is appealing to directly work on the compressed data without prior reconstruction of the original data. In this paper, a direct approach for modal analysis of damped systems is proposed by decomposing the compressed measurements with an appropriate dictionary. The damped free vibration function is adopted to form atoms in the dictionary for the following sparse decomposition. Compared with the normally used Fourier bases, the damped free vibration function spans a space with both the frequency and damping as the control variables. In order to efficiently search the enormous two-dimension dictionary with frequency and damping as variables, a two-step strategy is implemented combined with the Orthogonal Matching Pursuit (OMP) to determine the optimal atom in the dictionary, which greatly reduces the computation of the sparse decomposition. The performance of the proposed method is demonstrated by a numerical and an experimental example, and advantages of the method are revealed by comparison with another such kind method using POD technique.