• Title/Summary/Keyword: Smart vibration control

Search Result 378, Processing Time 0.025 seconds

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Identification of Dynamic property of MR Fluid (MR 유체의 동특성)

  • Ahn, Young-Kong;Ha, Jong-Yong;Ahn, Kyoung-Kwan;Yang, Bo-Suk;Shiraishi, Toshihiko;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.576-579
    • /
    • 2005
  • MR (Magneto Rheological) fluids are well known as a smart fluid and their application researches to control vibration have been conducted by many researchers. However, their dynamic properties have not been identified clearly yet. Therefore, the MR effect is investigated by using a rotational viscometer and a single degree of freedom system with an MR damper. The results obtained from the experimental study show that stiffness and viscous damping coefficients of the system with an MR damper are changed according to the variation of the applied current.

  • PDF

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper (인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • In recently, the vibration control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. MR dampers can be controlled with small power supplies and the dynamic range of this damping force is quite large. This MR damper is one of semi-active dampers as a new class of smart dampers. In this study, vibration control effect according to the installation location of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Groundhook control model is applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement responses can be effectively controlled as adjacent buildings are connected at roof floors by MR damper. And acceleration responses can be effectively reduced when two buildings are connected at the mid-stories of adjacent buildings by MR damper. Therefore, the installation floor of the MR damper should be selected with seismic response control target.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

Direct assignment of the dynamics of a laboratorial model using an active bracing system

  • Moutinho, C.;Cunha, A.;Caetano, E.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.205-217
    • /
    • 2011
  • This article describes the research work involving the implementation of an Active Bracing System aimed at the modification of the initial dynamics of a laboratorial building structure to a new desired dynamics. By means of an adequate control force it is possible to assign an entirely new dynamics to a system by moving its natural frequencies and damping ratios to different values with the purpose of achieving a better overall structural response to external loads. In Civil Engineering applications, the most common procedures for controlling vibrations in structures include changing natural frequencies in order to avoid resonance phenomena and increasing the damping ratios of the critical vibration modes. In this study, the actual implementation of an active system is demonstrated, which is able to perform such modifications in a wide frequency range; to this end, a plane frame physical model with 4 degrees-of-freedom is used. The Active Bracing System developed is actuated by a linear motor controlled by an algorithm based on pole assignment strategy. The efficiency of this control system is verified experimentally by analyzing the control effect obtained with the modification of the initial dynamic parameters of the plane frame and observing the subsequent structural response.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.