• 제목/요약/키워드: Smart transformer

검색결과 66건 처리시간 0.021초

스마트 배전을 위한 양방향 지능형 반도체 변압기 (Bidirectional Intelligent Semiconductor Transformer(BIST) for Smart Electric Power Distribution)

  • 김도현;이병권;한병문;이준영;최남섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.252-253
    • /
    • 2012
  • 본 연구에서는 단상 1.9 kV/220 V, 2 kVA 용량의 양방향 지능형 반도체 변압기의 새로운 회로구성을 제안하고 그 동작과 성능을 분석한 내용에 대해 기술하고 있다. 제안하는 반도체 변압기는 고압 고주파 AC-DC 정류기와 저압 양방향 DC-AC 컨버터로 구성되어 있으며, 회로적인 특성을 다양하게 분석하기 위하여 먼저 PSIM 소프트웨어를 이용한 시뮬레이션을 실시하였고 이를 기반으로 반도체변압기를 제작하여 실험을 통해 그 동작과 성능을 검증하였다. 제안하는 반도체변압기는 최근 많은 관심이 고조되고 있는 Smart-Grid에 효율적으로 적용 가능할 것으로 보인다.

  • PDF

Integration of Multi-scale CAM and Attention for Weakly Supervised Defects Localization on Surface Defective Apple

  • Nguyen Bui Ngoc Han;Ju Hwan Lee;Jin Young Kim
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.45-59
    • /
    • 2023
  • Weakly supervised object localization (WSOL) is a task of localizing an object in an image using only image-level labels. Previous studies have followed the conventional class activation mapping (CAM) pipeline. However, we reveal the current CAM approach suffers from problems which cause original CAM could not capture the complete defects features. This work utilizes a convolutional neural network (CNN) pretrained on image-level labels to generate class activation maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary detector. By integrating the CNN-based CAMs and attention maps, our approach localizes defective regions without requiring bounding box or pixel-level supervision during training. We evaluate our approach on a dataset of apple images with only image-level labels of defect categories. Experiments demonstrate our proposed method aligns with several Object Detection models performance, hold a promise for improving localization.

텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론 (Semantic Pre-training Methodology for Improving Text Summarization Quality)

  • 전민규;김남규
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.17-27
    • /
    • 2023
  • 최근 사용자에게 의미있는 정보만을 자동으로 간추리는 텍스트 자동 요약이 꾸준히 연구되고 있으며, 특히 인공신경망 모델인 트랜스포머를 활용한 텍스트 요약 연구가 주로 수행되고 있다. 다양한 연구 중 특히 문장 단위 마스킹을 통해 모델을 학습시키는 GSG 방식이 가장 주목을 받고 있지만, 전통적인 GSG는 문장의 의미가 아닌 토큰의 중복 정도에 기반을 두어 마스킹 대상 문장을 선정한다는 한계를 갖는다. 따라서 본 연구에서는 텍스트 요약의 품질을 향상시키기 위해, 문장의 의미를 고려하여 GSG의 마스킹 대상 문장을 선정하는 SbGSG(Semantic-based GSG) 방법론을 제안한다. 뉴스기사 370,000건과 요약문 및 레포트 21,600건을 사용하여 실험을 수행한 결과, ROUGE와 BERT Score 측면에서 제안 방법론인 SbGSG가 전통적인 GSG에 비해 우수한 성능을 보임을 확인하였다.

미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용 (Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration)

  • 김영광;김복주;안성만
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.329-352
    • /
    • 2022
  • 미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.

Sentiment analysis of Korean movie reviews using XLM-R

  • Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
    • International Journal of Advanced Culture Technology
    • /
    • 제9권2호
    • /
    • pp.86-90
    • /
    • 2021
  • Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

디리클레 분포 기반 모델 기여도 예측을 이용한 앙상블 트레이딩 알고리즘 (Ensemble trading algorithm Using Dirichlet distribution-based model contribution prediction)

  • 정재용;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.9-17
    • /
    • 2022
  • 알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.

그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구 (A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer)

  • 배지훈;이주환;유광현;권경주;김진영
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 최근 농가의 사과 품질 선별 작업에서 인적자원의 한계를 극복하기 위해 합성곱 신경망(CNN) 기반 시스템이 개발되고 있다. 그러나 합성곱 신경망은 동일한 크기의 이미지만을 입력받기 때문에 샘플링 등의 전처리 과정이 요구될 수 있으며, 과도 샘플링의 경우 화질 저하, 블러링 등 원본 이미지의 정보손실 문제가 발생한다. 본 논문에서는 위 문제를 최소화하기 위하여, 원본 이미지의 패치 기반 그래프를 생성하고 그래프 트랜스포머 모델의 랜덤워크 기반 위치 인코딩 방법을 제안한다. 위 방법은 랜덤워크 알고리즘 기반 위치정보가 없는 패치들의 위치 임베딩 정보를 지속적으로 학습하고, 기존 그래프 트랜스포머의 자가 주의집중 기법을 통해 유익한 노드정보들을 집계함으로써 최적의 그래프 구조를 찾는다. 따라서 무작위 노드 순서의 새로운 그래프 구조와 이미지의 객체 위치에 따른 임의의 그래프 구조에서도 강건한 성질을 가지며, 좋은 성능을 보여준다. 5가지 사과 품질 데이터셋으로 실험하였을 때, 다른 GNN 모델보다 최소 1.3%에서 최대 4.7%의 학습 정확도가 높았으며, ResNet18 모델의 23.52M보다 약 15% 적은 3.59M의 파라미터 수를 보유하여 연산량 절감에 따른 빠른 추론 속도를 보이며 그 효과를 증명한다.

Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지 (Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images)

  • 최소연;윤유정;강종구;김서연;정예민;임윤교;서영민;김완엽;최민하;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.949-965
    • /
    • 2023
  • 본 연구에서는 Sentinel-1 synthetic aperture radar 영상을 활용하여 딥러닝 모델인 Swin Transformer로 국내 농업용 저수지의 수표면적을 모니터링 하는 방법을 제시한다. Google Earth Engine 플랫폼을 이용하여 70만톤 급, 90만톤급, 150만톤급 저수지 7개소에 대한 2017년부터 2021년 데이터셋을 구축하였다. 저수지 4개소에 대한 영상 1,283장에 대해서 셔플링(suffling) 및 5-폴드(fold) 교차검증 기법을 적용하여 모델을 학습하였다. 시험평가 결과 모델의 윈도우 크기를 12로 설정한 Swin Transformer Large 모델은 각 폴드에서 평균적으로 99.54%의 정확도와 95.15%의 mean intersection over union (mIoU)을 기록하여 우수한 의미론적 분할 성능을 보여주었다. 최고 성능을 보여준 모델을 나머지 3개소 저수지 데이터셋에 적용하여 성능을 검증한 결과, 모든 저수지에서 정확도 99% 및 mIoU 94% 이상을 달성함을 확인했다. 이러한 결과는 Swint Transformer 모델이 국내의 농업용 저수지의 수표면적 모니터링에 효과적으로 활용될 수 있음을 보여준다.

딥러닝을 활용한 모바일 어플리케이션 리뷰 분류에 관한 연구 (A Study on Classification of Mobile Application Reviews Using Deep Learning)

  • 손재익;노미진;타지주르 라만;표규진;한무명초;김양석
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.76-83
    • /
    • 2021
  • 스마트폰과 태블릿과 같은 스마트 기기의 발달과 사용이 증가함에 따라, 모바일 기기를 기반으로 한 모바일 어플리케이션 시장이 급속도로 커지고 있다. 모바일 어플리케이션 사용자는 어플리케이션을 사용 경험을 공유하고자 리뷰를 남기는데, 이를 분석하면 소비자들의 다양한 니즈를 파악할 수 있고 어플리케이션 개발자들은 소비자들이 작성한 리뷰를 통해 애플리케이션의 개선을 위한 유용한 피드백을 받을 수 있다. 그러나 소비자들의 남기는 많은 양의 리뷰를 수작업으로 분석하기 위해서는 많은 시간과 비용을 지불해야하기 때문에 이를 최소화 할 방안을 마련할 필요성이 존재한다. 이에 본 연구에서는 구글 플레이스토어(Google PlayStore)의 배달 어플리케이션 사용자 리뷰를 수집한 후 머신러닝과 딥러닝 기법을 활용하여 어플리케이션 기능 장점, 단점, 기능 개선 요청, 버그 보고의 4가지 범주로 분류하는 방법을 제안한다. 연구 결과, Hugging Face의 pretrain된 BERT기반 Transformer모델의 성능의 경우 위의 4개의 범주에 대한 f1 score값은 차례대로 0.93, 0.51, 0.76, 0.83으로 LSTM, GRU보다 뛰어난 성능을 보인 것을 확인할 수 있었다.