• Title/Summary/Keyword: Smart sensor

Search Result 2,134, Processing Time 0.049 seconds

Design and Implementation of Bird Repellent System (조류 퇴치 시스템의 설계 및 구현)

  • Hong, Hyunggil;Cho, Yongjun;Woo, Senongyong;Song, Suhwan;Oh, Jangseok;Yun, Haeyong;Kim, Dae Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.104-109
    • /
    • 2019
  • Damage caused by wild animals such as pheasants and magpies is a problem in rural areas. A bird repellent system based on sensing and repelling farm pest animals and birds is proposed herein. This system is equipped with a bird model part on a supporting platform and comprises a sound source generator, a system control user interface, and a sensor in the center. The sensor is composed of an illuminance sensor and a PIR sensor. The illuminance sensor distinguishes between day and night, whereas the PIR sensor detects birds or wild animals and outputs them from the sound generator. The entire system can be managed easily by the user interface and system control.

Implementation of IEEE 1451 based ZigBee Smart Sensor System for Active Telemetries (능동형 텔레매트릭스를 위한 IEEE 1451 기반 ZigBee 스마트 센서 시스템의 구현)

  • Lee, Suk;Song, Young-Hun;Park, Jee-Hun;Kim, Man-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.176-184
    • /
    • 2011
  • As modern megalopolises become more complex and huge, convenience and safety of citizens are main components for a welfare state. In order to make safe society, telemetrics technology, which remotely measures the information of target system using electronic devices, is an essential component. In general, telemetrics technology consists of USN (ubiquitous sensor network) based on a wireless network, smart sensor, and SoC (system on chip). In the smart sensor technology, the following two problems should be overcome. Firstly, because it is very difficult for transducer manufacturers to develop smart sensors that support all the existing network protocols, the smart sensor must be independent of the type of networking protocols. Secondly, smart sensors should be modular so that a faulty sensor element can be replaced without replacing healthy communication element. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based ZigBee smart sensor system. More specifically, a smart sensor for large network coverage has been developed using ZigBee for active telemetrics.

Application of Fuzzy Logic to Smart Decision of Smart Sensor System

  • Pham, Van-Su;Linh Mai;Giwan Yoon;Kim, Dong-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.174-176
    • /
    • 2003
  • This paper considers the application of Fuzzy Logic to Smart Decision process of Smart Sensor system that interprets and response to the change of environmental parameters. The considered system consists of three sensors: temperature sensor, humidity sensor and pressure sensor. The smartness of system is constituted by the applying of Fuzzy Logic. The paper discusses the technical details of the application of Fuzzy Logic for making the system to be smarter.

Smart Sensor Management System Supporting Service Plug-In in MQTT-Based IIoT Applications

  • Lee, Young-Ran;Kim, Sung-Ki
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Industrial IoT applications, including smart factories, require two problem-solving to build data monitoring systems required by services from distributed IoT sensors (smart sensors). One is to overcome proprietary protocols, data formats, and hardware differences and to uniquely identify and connect IoT sensors, and the other is to overcome the problem of changing the server-side data storage structure and sensor data transmission format according to the addition or change of service or IoT sensors. The IEEE 1451.4 standard-based or IPMI specification-based smart sensor technology supports the development of plug-and-play sensors that solve the first problem. However, there is a lack of research that requires a second problem-solving, which requires support for the plug-in of IoT sensors into remote services. To propose a solution for the integration of these two problem-solving, we present a IoT sensor platform, a service system architecture, and a service plugin protocol for the MQTT-based IIoT application environment.

Analysis of the Ability of Recognize Objects for Smart Sensor According to Frequency Changing ( I ) (주파수 변화에 따른 HH 스마트센서의 센싱능력 평가(I))

  • 황성연;홍동표;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.922-926
    • /
    • 2001
  • This paper deals with sensing ability of smart sensor that has a sensing ability to distinguish materials according to frequency changing. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. We estimated the sensing ability of smart sensor with the $R_{SAI}$ method according to frequency changing. Experiments and analysis were executed to estimate the ability to recognize objects according to frequency changing. Sensing ability of smart sensors was evaluated relatively through a new $R_{SAI}$ method. Applications of smart sensors are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.etc.

  • PDF

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Design of Smart Three-Axis Force Sensor (스마트 3축 힘센서 설계)

  • Lee, Kyung-Jun;Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • This paper describes the design of a smart three-axis force sensor for measuring forces Fx, Fy and Fz. The smart three-axis force sensor is composed of a three-axis force sensor, a force-measuring device, housing and a cover, where the three-axis force sensor and the force-measuring device are inside the housing and the cover. The measuring device measures forces Fx, Fy and Fz from the three-axis force sensor, and calculates the resultant force using the measured forces, and then sends the resultant force and forces to a PC or other controller using RS-485 communication. The repeatability error and the non-linearity error of the smart three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.87%. It is thought that the sensor can be used for measuring forces in a robot, automatic systems and so on.