• 제목/요약/키워드: Smart polymer

검색결과 199건 처리시간 0.028초

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

Structural health monitoring of CFRPs using electrical resistance by reduced peripheral electrodes

  • Park, Young-Bin;Roh, Hyung Doh;Lee, In Yong
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.737-744
    • /
    • 2021
  • In this study, structural health monitoring (SHM) methods of carbon fiber reinforced plastics (CFRPs) were investigated using electrical resistance. The developed sensing technique monitored electrical resistance in accordance with the impact damage of a CFRP. The changes in electrical resistances with multiple electrode sets enabled SHM without extra sensors so that this technique can be called self-sensing. Moreover, this study proposed electrodes only at peripheral side of a structure to minimize the number of electrodes compared to those in an array which has square number of sensors as the sensing area increases. For the intensive investigation, electromechanical sensitivity in terms of electrode distance was analyzed and optimized under drop weight impact testing. Then, SHM methods with electrodes in an array and electrodes in peripheral edges were comparatively investigated. The developed methods successfully localized impact damages into 2D coordinates. Furthermore, damage severity can be shown with a damage map by calculating electrical resistance change ratio. Therefore, structural health self-sensing system using electrical resistance was successfully developed with the minimum number of electrodes.

Exploratory research on ultra-long polymer optical fiber-based corrosion sensing for buried metal pipelines

  • Luo, Dong;Li, Yuanyuan;Yang, Hangzhou;Sun, Hao;Chen, Hongbin
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.507-520
    • /
    • 2020
  • In order to achieve effective corrosion monitoring of buried metal pipelines, a Novel nondestructive Testing (NDT) methodology using ultra-long (250 mm) Polymer Optical Fiber (POF) sensors coated with the Fe-C alloy film is proposed in this study. The theoretical principle is investigated to clarify the monitoring mechanism of this method, and the detailed fabrication process of this novel POF sensor is presented. To validate the feasibility of this novel POF sensor, exploratory research of the proposed method was performed using simulated corrosion tests. For simplicity, the geometric shape of the buried pipeline was simulated as a round hot-rolled plain steel bar. A thin nickel layer was applied as the inner plated layer, and the Fe-C alloy film was coated using an electroless plating technique to precisely control the thickness of the alloy film. In the end, systematic sensitivity analysis on corrosion severity was further performed with experimental studies on three sensors fabricated with different metal layer thicknesses of 25 ㎛, 30 ㎛ and 35 ㎛. The experimental observation demonstrated that the sensor coated with 25 ㎛ Fe-C alloy film presented the highest effectiveness with the corrosion sensitivity of 0.3364 mV/g at Δm = 9.32 × 10-4 g in Stage I and 0.0121 mV/g in Stage III. The research findings indicate that the detection accuracy of the novel POF sensor proposed in this study is satisfying. Moreover, the simple fabrication of the high-sensitivity sensor makes it cost-effective and suitable for the on-site corrosion monitoring of buried metal pipelines.

그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서 (Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids)

  • 나승찬;이현종;임태경;윤정민;석지원
    • Composites Research
    • /
    • 제35권4호
    • /
    • pp.283-287
    • /
    • 2022
  • 신축성 스트레인 센서는 웨어러블 기기나 건강 모니터링과 같은 미래 응용 분야에 적용하기 위하여 개발되고 있는데, 센서의 신뢰성을 높이기 위해 안정성과 반복성이 고려되어야 한다. 본 연구에서는 3D 프린팅을 통해 키리가미 패턴이 있는 고분자 구조를 제작하여 센서의 신축성과 히스테리시스를 개선하였다. 견고한 전도성 네트워크를 구현하기 위하여 그래핀과 탄소나노섬유를 혼합한 하이브리드 소재를 고분자 구조에 코팅하였다. 제작한 신축성 스트레인 센서는 32%의 스트레인에 대해 게이지팩터가 36을 보였으며, 1%부터 30%까지의 다양한 스트레인에 대해서 안정적인 저항 변화 응답을 나타냈다.

발열장치를 이용한 기능성 스마트 파운데이션의 구성 시안 (Prototype of Smart Foundation with Heating Devices)

  • 황영미;이정란
    • 한국의류산업학회지
    • /
    • 제14권4호
    • /
    • pp.588-596
    • /
    • 2012
  • This research was intended to design an experimental girdle with thermal insulation function for adult women in their 20s. The design of the experimental girdle was based on the pattern of commercially available girdle. The final pattern of the experimental girdle was established according to the drawing equations determined based on the result of appearance evaluation. The equations were (waist circumference${\times}0.88$)/2 for waist circumference, (hip circumference${\times}0.77$)/2 for hip circumference, and (thigh circumference${\times}0.85$) for thigh circumference. In order to develop a heating device, the most effective fabric heater was adopted based on the experiments about the number of caron fibers, heater size and attachment site. Three heaters-one with a size of $14.5{\times}9.5$ cm, and the other two with the size of $8.0{\times}15.0$ cm-were attached to the areas corresponding to the lower abdomen and the hip, 5 cm below the waist. A heater was developed by connecting these heaters to a controller, 2 batteries (7.4 V 2000 mAh lithium polymer batteries) and a switch (for mode conversion between high/medium/low temperatures). The heater was integrated into the inside of the girdle, so that attachment and detachment were possible without the change of appearance. The tentative configuration plan was proposed for the development of a functional smart girdle with an excellent thermal insulation effect.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구 (Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications)

  • 이정민;서성용;임영수;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

전기전도성 고분자를 이용한 전(全)유기고분자 박막트랜지스터의 제조 및 특성 (All-polymer Thin Film Transistor Based On Electrically Conducting Polymers)

  • 이병섭;이성범;김미선;이숭욱;강한샘;강현숙;주진수;;이준영
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.40-43
    • /
    • 2003
  • 최근 관심의 대상이 되고 있는 유기박막트랜지스터 (Organic Thin Film Transisto., OTFT)는 현재 사용되고 있는 무기물 트랜지스터에 비해 가볍고 낮은 공정 온도와 가격으로 인하여 대면적 LCD, EL, smart card의 능동구동소자로서 적용이 가능하다고 알려져 있다[1,2]. 하지만 현재 연구되고 있는 단분자 유기물을 사용한 OTFT는 비교적 높은 온도에서 소자의 각 구성요소를 증착해야 되므로 여전히 복잡한 공정이 필요하며, 활성층으로 쓰이는 유기물과 금속전극의 계면문제로 전기적 특성이 떨어진다[3]. (중략)

  • PDF

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • 제2권2호
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Reliability of metal films on flexible polymer substrate during cyclic bending deformations

  • 김병준;정성훈;김도근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2016
  • Recently, the technology for flexible electronics such as flexible smart phone, foldable displays, and bendable battery is under active development. With approaching the real commercialization of flexible electronics, the electrical and mechanical reliability of flexible electronics have become significantly important because they will be used under various mechanical deformations such as bending, twisting, stretching, and so on. These mechanical deformations result in performance degradation of electronic devices due to several mechanical problems such as cracking, delamination, and fatigue. Therefore, the understanding of relationship between mechanical loading and electrical performance is one of the most critical issues in flexible electronics for expecting the lifetime of products. Here, we have investigated the effect of monotonic tensile and cyclic deformations on metal interconnect to provide a guideline for improving the reliability of flexible interconnect.

  • PDF