Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.6.737

Structural health monitoring of CFRPs using electrical resistance by reduced peripheral electrodes  

Park, Young-Bin (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology)
Roh, Hyung Doh (Composites Research Division, Korea Institute of Materials Science)
Lee, In Yong (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Smart Structures and Systems / v.28, no.6, 2021 , pp. 737-744 More about this Journal
Abstract
In this study, structural health monitoring (SHM) methods of carbon fiber reinforced plastics (CFRPs) were investigated using electrical resistance. The developed sensing technique monitored electrical resistance in accordance with the impact damage of a CFRP. The changes in electrical resistances with multiple electrode sets enabled SHM without extra sensors so that this technique can be called self-sensing. Moreover, this study proposed electrodes only at peripheral side of a structure to minimize the number of electrodes compared to those in an array which has square number of sensors as the sensing area increases. For the intensive investigation, electromechanical sensitivity in terms of electrode distance was analyzed and optimized under drop weight impact testing. Then, SHM methods with electrodes in an array and electrodes in peripheral edges were comparatively investigated. The developed methods successfully localized impact damages into 2D coordinates. Furthermore, damage severity can be shown with a damage map by calculating electrical resistance change ratio. Therefore, structural health self-sensing system using electrical resistance was successfully developed with the minimum number of electrodes.
Keywords
carbon fiber reinforced polymer; composites; nondestructive evaluation; smart materials; structural health monitoring (SHM);
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Wang, Z., Qiao, P. and Shi, B. (2018), "Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries", Smart Struct. Syst., Int. J., 21(2), 195-205. https://doi.org/10.12989/sss.2018.21.2.195   DOI
2 Yu, Y., Ou, J. and Li, H. (2010), "Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 6(5-6), 641-659. https://doi.org/10.12989/sss.2010.6.5_6.641   DOI
3 Wang, D. and Chung, D.D.L. (2013), "Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing", Carbon, 60, 129-138. https://doi.org/10.1016/j.carbon.2013.04.005   DOI
4 Ramirez, M. and Chung, D.D.L. (2016), "Electromechanical, self-sensing and viscoelastic behavior of carbon fiber tows", Carbon, 110, 8-16. https://doi.org/10.1016/j.carbon.2016.08.095   DOI
5 Karayannis, C.G., Voutetaki, M.E., Chalioris, C.E., Providakis, C.P. and Angeli, G.M. (2015), "Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT)", Smart Struct. Syst., Int. J., 15(4), 997-1018. http://doi.org/10.12989/sss.2015.15.4.997   DOI
6 Andreades, C., Fierro, G.P.M. and Meo, M. (2020), "A nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers", Ultrasonics, 108, 106181. https://doi.org/10.1016/j.ultras.2020.106181   DOI
7 Carboni, M., Gianneo, A. and Giglio, M. (2015), "A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites", Ultrasonics, 60, 51-64. https://doi.org/10.1016/j.ultras.2015.02.011   DOI
8 Hauffe, A., Hahnel, F. and Wolf, K. (2020), "Comparison of algorithms to quantify the damaged area in CFRP ultrasonic scans", Compos. Struct., 235, 111791. https://doi.org/10.1016/j.compstruct.2019.111791   DOI
9 He, Y., Tian, G., Pan, M. and Chen, D. (2014b), "Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current", Compos. Part B: Eng., 59, 196-203. https://doi.org/10.1016/j.compositesb.2013.12.005   DOI
10 Ju, M., Park, K., Moon, D. and Park, C. (2018), and Sim, J., "On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor", Smart Struct. Syst., Int. J., 65(2), 155-162. http://doi.org/10.12989/sem.2018.65.2.155   DOI
11 Kim, J.-W., Lee, C. and Park, S. (2012), "Damage Localization for CFRP-Debonding Defects Using Piezoelectric SHM Techniques", Res. Nondestruct. Eval., 23(4), 183-196. http://dx.doi.org/10.1080/09349847.2012.660244   DOI
12 Liang, T., Ren, W., Tian, G.Y., Elradi, M. and Gao, Y. (2016), "Low energy impact damage detection in CFRP using eddy current pulsed thermography", Compos. Struct., 143, 352-361. https://doi.org/10.1016/j.compstruct.2016.02.039   DOI
13 Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences", Progress Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002   DOI
14 Casciati, S, Chen, Z.C., Faravelli, L. and Vece, M. (2016), "Synergy of monitoring and security", Smart Struct. Syst., Int. J., 17(5), 743-751. https://doi.org/10.12989/sss.2016.17.5.743   DOI
15 Todoroki, A., Yamada, K., Mizutani, Y., Suzuki, Y. and Matsuzaki, R. (2015), "Impact damage detection of a carbon-fibre-reinforced-polymer plate employing self-sensing time-domain reflectometry", Compos. Struct., 130, 174-179. https://doi.org/10.1016/j.compstruct.2015.04.020   DOI
16 Xi, X. and Chung, D.D.L. (2019), "Piezoelectric and piezoresistive behavior of unmodified carbon fiber", Carbon, 145, 452-461. https://doi.org/10.1016/j.carbon.2019.01.044   DOI
17 Chung, D.D.L. (2016), Advanced Composite Materials for Aerospace Engineering, edited by S. Rana and R. Fangueiro, Woodhead Publishing, pp. 295-331.
18 Gallo, G.J. and Thostenson, E.T. (2015), "Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks", Mater. Today Commun., 3, 17-26. https://doi.org/10.1016/j.mtcomm.2015.01.009   DOI
19 Geng, X., Jiang, M., Gao, L., Wang, Q., Jia, Y., Sui, Q., Jia, L. and Li, D. (2017), "Sensing characteristics of FBG sensor embedded in CFRP laminate", Measurement, 98, 199-204. https://doi.org/10.1016/j.measurement.2016.12.003   DOI
20 Cho, S., Jo, H., Jang, S., Park, J., Yun, C.-B. and Seo, J.-W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., Int. J., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461   DOI
21 Cocchi, D., Raimondi, L., Brugo, T.M. and Zucchelli, A. (2020), "A systematic material-oriented design approach for lightweight components and the CFRP motor wheel case study", Int. J. Adv. Manuf. Technol., 109(7), 2133-2153. https://doi.org/10.1007/s00170-020-05756-2   DOI
22 Ghodrati, A.G., Seyed, R.S.A. and Bagheri, A. (2011), "Damage detection in plates based on pattern search and Genetic algorithms", Smart Struct. Syst., Int. J., 7(2), 117-132. http://doi.org/10.12989/sss.2011.7.2.117   DOI
23 Kwon, D.-J., Shin, P.-S., Kim, J.-H., Wang, Z.-J., DeVries, K.L. and Park, J.-M. (2016), "Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance (ER) measurements", Compos. Part B: Eng., 99, 528-532. https://doi.org/10.1016/j.compositesb.2016.06.050   DOI
24 Mizukami, K., Mizutani, Y., Kimura, K., Sato, A., Todoroki, A. and Suzuki, Y. (2016), "Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method", Compos. Part A: Appl. Sci. Manuf., 82, 108-118. https://doi.org/10.1016/j.compositesa.2015.11.040   DOI
25 Naghashpour, A. and Van Hoa, S. (2017), "Requirements of amount of carbon nanotubes for damage detection in large polymer composite structures", Polym. Testing, 63, 407-416. https://doi.org/10.1016/j.polymertesting.2017.08.013   DOI
26 Todoroki, A., Haruyama, D., Mizutani, Y., Suzuki, Y. and Yasuoka, T. (2014), "Electrical resistance change of carbon/epoxy composite laminates under cyclic loading under damage initiation limit", Open J. Compos. Mater., 4(1). http://doi.org/10.10.4236/ojcm.2014.41003   DOI
27 Naghashpour, A. and Van Hoa, S. (2013), "A technique for real-time detection, location and quantification of damage in large polymer composite structures made of electrically nonconductive fibers and carbon nanotube networks", Nanotechnology, 24(45), 455502. https://doi.org/10.1088/0957-4484/24/45/455502   DOI
28 He, Y., Tian, G., Pan, M. and Chen, D. (2014a), "Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography", Compos. Struct., 109, 1-7. https://doi.org/10.1016/j.compstruct.2013.10.049   DOI
29 Kalashnyk, N., Faulques, E., Schjodt-Thomsen, J., Jensen, L.R., Rauhe, J.C.M. and Pyrz, R. (2017), "Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity", Synthetic Metals, 224, 56-62. https://doi.org/10.1016/j.synthmet.2016.12.021   DOI
30 Suvarna, R., Arumugam, V., Bull, D.J., Chambers, A.R. and Santulli, C. (2014), "Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomography", Compos. Part B: Eng., 66, 58-64. https://doi.org/10.1016/j.compositesb.2014.04.028   DOI
31 Yamane, T. and Todoroki, A. (2016), "Electric potential function of oblique current in laminated carbon fiber reinforced polymer composite beam", Compos. Struct., 148, 74-84. https://doi.org/10.1016/j.compstruct.2016.03.047   DOI
32 Zhong, Y. and Xiang, J. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., Int. J., 24(2), 173-182. https://doi.org/10.12989/sss.2019.24.2.173   DOI
33 Lu, S., Jiang, M., Sui, Q., Sai, Y. and Jia, L. (2015), "Low velocity impact localization system of CFRP using fiber Bragg grating sensors", Optical Fiber Technol., 21, 13-19. https://doi.org/10.1016/j.yofte.2014.07.003   DOI
34 Vertuccio, L., Spinelli, G., Lamberti, P., Tucci, V., Zarrelli, M., Russo, S., Iannuzzo, G. and Guadagno, L. (2020), "Self-sensing nanocomposites in automotive/aeronautic field", Mater. Today: Proceedings, 34, 125-127. https://doi.org/10.1016/j.matpr.2020.01.409   DOI
35 Wang, S. and Chung, D.D.L. (2006), "Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement", Carbon, 44(13), 2739-2751. https://doi.org/10.1016/j.carbon.2006.03.034   DOI
36 Naghashpour, A. and Van Hoa, S. (2014), "A technique for real-time detecting, locating, and quantifying damage in large polymer composite structures made of carbon fibers and carbon nanotube networks", Struct. Health Monitor., 14(1), 35-45. https://10.1177/1475921714546063   DOI
37 Post, W., Kersemans, M., Solodov, I., Van Den Abeele, K., Garcia, S.J. and van der Zwaag, S. (2017), "Non-destructive monitoring of delamination healing of a CFRP composite with a thermoplastic ionomer interlayer", Compos. Part A: Appl. Sci. Manuf., 101, 243-253. https://doi.org/10.1016/j.compositesa.2017.06.018   DOI
38 Todoroki, A. (2014), "Monitoring of electric conductance and delamination of CFRP using multiple electric potential measurements", Adv. Compos. Mater., 23(2), 179-193. http://doi.org/10.1080/09243046.2013.844900   DOI
39 Todoroki, A., Samejima, Y., Hirano, Y. and Matsuzaki, R. (2009), "Piezoresistivity of unidirectional carbon/epoxy composites for multiaxial loading", Compos. Sci. Technol., 69(11), 1841-1846. https://doi.org/10.1016/j.compscitech.2009.03.023   DOI
40 Vaidya, S. and Allouche, E.N. (2011), "Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer", Smart Struct. Syst., Int. J., 7(1), 27-40. http://doi.org/10.12989/sss.2011.7.1.027   DOI