• 제목/요약/키워드: Smart polymer

검색결과 199건 처리시간 0.034초

Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery

  • Kataoka, Kazunori
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.54-55
    • /
    • 2006
  • Polymeric micelles, supramolecular assemblies of block copolymers, are useful nanocarriers for the systemic delivery of drugs and genes. Recently, novel polymeric micelles with various functions such as the targetability and stimuli-sensitivity have been emerged as promising carriers that enhance the efficacy of drugs and genes with minimal side effects. This presentation focuses our recent approach to the preparation of functional block copolymers that are useful for constructing smart micellar delivery systems in advanced therapeutics, including chemo-gene therapy. Particular emphasis is placed on the characteristic behaviors of intracellular environment-sensitive micelles that selectively exert drug activity and gene expression in live cells.

  • PDF

Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구 (A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller)

  • 김태형;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

형상 기억 고분자 나노 복합 소재 (Shape Memory Polymer Nanocomposites)

  • 홍진호;윤주호;김일;심상은
    • Elastomers and Composites
    • /
    • 제45권3호
    • /
    • pp.188-198
    • /
    • 2010
  • 형상 기억 고분자(shape memory polymers, SMPs)는 일정한 온도 또는 특정 자극이 주어졌을 때 가해진 일시적인 변형으로부터 처음 상태로 되돌아 오는 고분자를 말한다. 이러한 형상 기억 고분자는 각종 산업에서 자가 조립 또는 자가 수리가 가능한 스마트 고분자로 분류되어 고부가가치를 지니고 있다. 특히 형상 기억 고분자의 방열 성능, 전기 전도 성능, 물리적 성능, 광학 성능 등은 다양한 충전제를 도입함으로써 향상될 수 있다. 본 논문에서는 형상 기억 고분자의 기본 원리 및 최근의 형상 기억 고분자 나노 복합재료에 대해 알아본다.

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권1호
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Dynamic modeling and control of IPMC hydrodynamic propulsor

  • Agrahari, Shivendra K.;Mukherjee, Sujoy
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.499-508
    • /
    • 2017
  • The ionic polymer-metal composite (IPMC) is an electroactive polymer material and has a promising potential as actuators for propulsion and locomotion in underwater systems. In this paper a physics based model is used to analyse the actuation dynamics of the IPMC propulsor. Moreover, proportional-integral (PI) controller is used for position control of the tip displacement of IPMC propulsor. PI parameter tuning is performed using particle swarm optimization (PSO) algorithm. Several performance indices have been used as an objective function to optimize the error of the system. Finally, the best tuning method is found out by comparing the results under various performance indices.

전도성 형상 기억 폴리머 작동기의 개발 (Development of Conducting Shape Memory Polymer Actuators)

  • 백일현;윤광준;조재환;구남서
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.976-980
    • /
    • 2004
  • This study has introduced how to make conducting shape memory polyurethane(CSMPu) as a possible application to smart actuators. Different from conventional polyurethane, CSMPu can have a high conductivity and then electric power supplies enough energy to deform. To prepare conducting polyurethane, carbon nanotubes were incorporated into shape memory polyurethane. Basic experiments to reveal its characteristics have been conducted for a development of actuators. From the results conducted in the present study, optimized conditions for the process of actuating deformation were found. Thermo-electric characteristics such as the relation between temperature and specific resistance and trend curves of resistance variations according to elongations were measured. These data provided a strong possibility of CSMPu as a smart actuator.

Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates

  • Nasab, Mohammad Seddiq Eskandari;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, a series of cyclic loading tests were performed on viscoelastic dampers (VED) composed of viscoelastic polymer composite material and thin steel plates to observe the variation of the mechanical properties under different loading conditions. A mathematical model was developed based on the Kelvin-Voigt and Bouc-Wen models to formulate the nonlinear force-displacement relationship of the viscoelastic damper. The accuracy of the proposed mathematical model was verified using the data obtained from the tests. The mathematical model was applied to analyze a reinforced concrete framed structure retrofitted with viscoelastic dampers. Nonlinear dynamic analysis results showed that the average maximum inter-story drift ratios of the retrofitted structure met the target limit state after installing the VED. In addition, both the maximum and residual displacements were significantly reduced after the installation of the VED.