• Title/Summary/Keyword: Smart plug

Search Result 79, Processing Time 0.04 seconds

A Way to Smart Interface based on the IEEE 1451 Standards for Five-senses Information Device in Ubiquitous Environments (유비쿼터스 환경에서 오감 정보 장치를 위한 IEEE 1451 표준 기반의 스마트 인터페이스 방안)

  • Kim, Dong-Jin;Kim, Jeong-Do;Ham, Yu-Kyung;Lee, Jung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.339-346
    • /
    • 2008
  • Ubiquitous computer can be interfaced with many several peripheral devices for information acquisition. Users should be able to easily use these devices without considering when these devices were interfaced, how to use these devices, and interoperability issues (such as plug and play, the installation of device drivers, and so on). Further, computers and their users need an interface technology that provides five-senses information (the recognition and expressions of the user) such that multimodal interaction can be enabled. In this paper, we proposed an IEEE 1451 standard that uses a smart interface standard for interfacing devices with ubiquitous computer. IEEE 1451 describes the property information of a transducer in the transducer electronic data sheet (TEDS). Further, by using the TEDS format, the interoperability between devices can be enabled by means of the plug-and-play function; it also makes the inconvenient installations of device drivers unnecessary.

Design of the Smart HDMI Switch for Wireless HD Video Transmission System (무선 HD 비디오 전송 시스템용 스마트 HDMI 스위치의 설계)

  • Kim, Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.6
    • /
    • pp.83-89
    • /
    • 2011
  • In this study a smart HDMI switch is proposed to detect newly formed video stream and automatically change the transfer path to the corresponding port without pulling the HDMI plug and putting it again in the desired port manually and physically. Furthermore the proposed switch is designed in the advanced wireless video transmission scheme based on millimeter band technology. The proposed system shows its feasibility by the hardware experiment in the full-HD video transmission performance including the function of the smart port change.

  • PDF

Energy Saving System using Occupancy Sensors and Smart Plugs (재실감지 센서와 스마트 플러그를 이용한 에너지 절약 시스템)

  • Jung, Kyung Kwon;Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.161-167
    • /
    • 2015
  • This paper presented an occupancy-based energy saving system for appliance energy saving in smart house. The developed system is composed of a sensing system and a home gateway system. The sensing system is set of wireless sensor nodes which have pyroelectric infrared (PIR) sensor to detect a motion of human and set of smart plugs which measure the current using CT (current transformer) sensor and send the current to home gateway wirelessly. We measured current consumption of appliances in real time using smart plugs, and checked the occupation of residents using occupancy sensors installed on the door and room. The proposed system saves electric energy to switch off the supply power of unnecessary usages in the unoccupied spaces. Experiments conducted have shown that electric energy usage of appliances can be saved about 34% checked by using occupation.

Implementation of Multiple Connectivity using CANopen in IEEE 1451.0-based Smart Sensor (IEEE 1451.0 기반 스마트 센서에서 CANopen을 이용한 다중 접속 기능의 구현)

  • Park, Jee-Hun;Lee, Suk;Song, Young-Hun;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.436-445
    • /
    • 2011
  • As automation systems become intelligent and autonomous for productibility, industrial networks (fieldbuses) and network-based devices are essential components of intelligent manufacturing systems. However, there are obstacles for the wide acceptance of the network-based devices such as smart sensor and network-based actuator. First, there exist numerous fieldbus protocols that a network-based device should be able to support. Second, the whole network-based device has to be replaced when only the sensor of the module fails. In order to overcome these obstacles, a smart sensor/actuator is implemented as two units; one responsible for network communication and the other for sensor/actuator operations using IEEE 1451.0 standard. This paper presents a structure of the 1451.0-based smart sensor with multiple connectivity function designed by CANopen.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

A Study on the application of IEEE 1451 for efficient measurement system (효과적인 계측시스템을 위한 IEEE 1451 적용에 관한 연구)

  • Cho, Hyang-Duck;Park, Woo-Il;Moon, Se-Sang;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.983-986
    • /
    • 2007
  • In this paper, we addressed the IEEE 1451.x that can organize a sensor network for efficient measurement system. IEEE 1451 provides standard interface, specification and Object model for example Network Capable Application Processor(NCAP), Transducer Electronic Data Sheet(TEDS), Smart Transducer Interface Module (STIM) and so on. Especially IEEE 1451.2 defines the TEDS Formats and STIM. The TEDS makes transducer to be used independently from device. NCAP makes the component of measurement system to be handled as an object. Therefore each function block constructs system by using Add-on. IEEE 1451.x can be expend the system with Add-on and Plug-and-Play by using smart sensor and connected with current network. We expect that this method can provide the efficiency and convenience when using the measurement system.

  • PDF

Design of AMI(advanced metering infrastructure) System Based on SmartPlug (스마트플러그 기반의 AMI(advanced metering infrastructure) 시스템 설계)

  • Jean, Jae-Hwan;Kim, Sung-Hyun;Gang, Seong-In;Kim, Kwan-Hyung;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.593-595
    • /
    • 2011
  • 본 논문에서는 기존에 전력소비자들의 전기요금을 낮추기 위해 전력사업자가 설치하는 스마트미터(smart meter)에 의존하는 대신 가정 내 PLC(Power Line Communication)망을 활용하여 소비자의 기기별로 에너지모니터링 환경을 구축하여 스마트그리드를 통해 소비자가 얻을 수 있는 많은 혜택을 제공할 수 있는 스마트플러그 기반 AMI 시스템을 개발하고자 한다.

  • PDF

Design and Implementation of Smart Plug using Sensor Networks in Smart House (센서 네트워크를 이용한 첨단주택의 스마트 플러그 설계 및 구현)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae;Sung, Ha-Gyeong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.412-415
    • /
    • 2010
  • 첨단 주택에서 가전기기의 에너지 소모량을 모니터링하기 위하여 센서 네트워크를 이용한 스마트 플러그를 제안한다. 제안한 시스템은 전기 콘센트 형태로, 매 초마다 홀센서를 지나가는 전류량을 측정하여 센서 네트워크를 통해 홈 게이트웨이에 전송한다. 홈 게이트웨이는 전송된 데이터를 전력량으로 변환하여 저장하고, 모니터링 프로그램을 통해 전력량을 표시한다. 실험 결과 제안한 시스템은 에너지 소모와 사용을 관리함에 있어서 우수한 성능을 확인하였다.

  • PDF

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.