• Title/Summary/Keyword: Smart pipe

Search Result 73, Processing Time 0.025 seconds

Development of the Activity Type Smart Concrete using the Glass Pipe

  • Kim, Ie-Sung;Kim, Wha-Jung
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.29-32
    • /
    • 2005
  • A various structural materials are used in construction projects such as a stone, concrete, steel materials. Between of them, concrete are used widely. The compressive strength of concrete is high, and its maintenance and management is comparatively easy. The R.C Building will be superannuated as time passes. This program is generated by propagation of cracks. In order to manage such cracks, time and efforts, expense, etc. are required. In this study, glass sensors were embedding in a model beam and column and leakage of fluorescence and adhesive material was investigated. Further, currents in glass pipe were observed to find the leakage of liquid in glass pipes. Progressive cracks generated by cause the fracture of glass pipes. Therefore, the liquid become to flow and electric current stops, and the cracked part of the member can be found easily. Moreover, the adhesive delays progressive cracking system that responds in air, and the life of a structure can be made to extend. The purpose of this research is to develop of low price sensors that can perform of self-diagnosis in addition to ability of concrete repair concrete to damage.

Sign Language Translation System Development Using MediaPipe (MediaPipe를 활용한 수어 번역 시스템 개발)

  • Kim, Kyung-Min;Song, Mi-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.684-686
    • /
    • 2022
  • 다양한 언어로 소통하고 있는 우리는 다른 언어와 교류하기 위해 번역, 통역의 존재가 필수가 되기도 한다. 하지만 음성언어를 사용하지 않는 즉, 손으로 언어를 표현하는 수어를 번역하는 통역의 존재는 아직 실현되지 않았다. 이에 본 논문에서는 MediaPipe와 OpenCV 라이브러리를 이용하여 손의 형태를 인식하고 CNN 알고리즘을 통한 텍스트 데이터화 하여 수어 동작을 학습시켜 이를 번역시켜주는 시스템을 연구한다. 이를 통해 공공기관을 이용함에 불편함을 줄이고, 농인의 의사를 보다 빠르게 파악할 수 있도록 도와주는 번역 시스템 제작하는 것에 목적이 있다.

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.

Laser based impedance measurement for pipe corrosion and bolt-loosening detection

  • Yang, Jinyeol;Liu, Peipei;Yang, Suyoung;Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study proposes a laser based impedance measurement system and impedance based pipe corrosion and bolt-loosening monitoring techniques under temperature variations. For impedance measurement, the laser based impedance measurement system is optimized and adopted in this paper. First, a modulated laser beam is radiated to a photodiode, converting the laser beam into an electric signal. Then, the electric signal is applied to a MFC transducer attached on a target structure for ultrasonic excitation. The corresponding impedance signals are measured, re-converted into a laser beam, and radiated back to the other photodiode located in a data interrogator. The transmitted impedance signals are treated with an outlier analysis using generalized extreme value (GEV) statistics to reliably signal off structural damage. Validation of the proposed technique is carried out to detect corrosion and bolt-loosening in lab-scale carbon steel elbow pipes under varying temperatures. It has been demonstrated that the proposed technique has a potential to be used for structural health monitoring (SHM) of pipe structures.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

Reliability Analysis on Fuel System for the Smart UAV (스마트 무인기 연료공급시스템의 신뢰도 분석)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.233-236
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out.

  • PDF

Fuel System Design of the Smart UAV (스마트 무인기 연료 시스템 설계에 관한 연구)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out. Based on this fuel system layout, operational reliability analysis was carried out.

Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART (SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰)

  • Lee, Gyu Mahn;Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline (도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가)

  • Eunher Shin;Gimoon Jeong;Kyoungpil Kim;Taeho Choi;Seon-ha Chae;Yong Woo Cho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.