• Title/Summary/Keyword: Smart integrated monitoring system

Search Result 134, Processing Time 0.026 seconds

Implementation of Real-time Monitoring System for Marine Elevator using Smart Sensors (스마트 센서를 이용한 선박용 승강기 실시간 모니터링 시스템의 구현)

  • Lee, WooJin;Yim, JaeHong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.405-410
    • /
    • 2016
  • Elevator industry is a field that is mechanical, electrical and electronic technology and constantly requires inspection and maintenance considering various applications and various types. Recently, various elevator control and monitoring technologies with IT are developing for elevators on land. But technologies with IT have been hardly done in marine elevator that is consistently assured safety and reliability of life cycle for its parts in poor environment. In this paper, we implemented embedded main controller, floor controller and car controller that meet the requirements and use NMEA network protocol by analyzing home and abroad integrated elevator operation and management systems. Especially, we secured reliability of maintenance by real-time fault diagnosis and control that was implemented with limit switch, gyro sensor, temperature/humidity/barometric pressure sensor and fire detection sensor thinking over the environmental conditions of terrestrial and marine elevator.

Health and Wellness Monitoring Using Intelligent Sensing Technique

  • Meng, Yao;Yi, Sang-Hoon;Kim, Hee-Cheol
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.478-491
    • /
    • 2019
  • This work develops a monitoring system for the population with health concerns. A belt integrated with an on-body circuit and sensors measures a wearer's selected vital signals. The electrocardiogram sensors monitor heart conditions and an accelerometer assesses the level of physical activity. Sensed signals are transmitted to the circuit module through digital yarns and are forwarded to a mobile device via Bluetooth. An interactive application, installed on the mobile device, is used to process the received signals and provide users with real-time feedback about their status. Persuasive functions are designed and implemented in the interactive application to encourage users' physical activity. Two signal processing algorithms are developed to analyze the data regarding heart and activity. A user study is conducted to evaluate the performance and usability of the developed system.

Development of GPS Tracking System for Container using Smart Tag (Smart Tag를 이용한 컨테이너의 GPS 위치 추적 시스템 개발)

  • Kim, Dong-Wan;Park, Jee-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.176-182
    • /
    • 2006
  • In this paper, we explore a novel transportation container in the marine terminals. The container includes Smart Tag embedded with radio frequency(RF) chips, which is used to access information about productions and possibly incorporated with GPS systems for integrated managements of them. The proposed mechanism is valuable for decreasing cost, increasing satisfaction of customers, and preventing economic loss due to production missing, thus increase of economic efficiency is highly anticipated. Consequently, accurate and proficient management is considerably accomplished in overall procedures of inventory and currency by means of the proposed systems.

A Study on the Necessity of Smart Factory Application in Electronic Components Assembly Process (전자부품 조립공정에서 스마트팩토리 적용 필요성에 대한 연구)

  • Kim, Tae-Jong;Lee, Dong-Yoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.138-144
    • /
    • 2021
  • In the electronic component assembly business, when product defects occur, it is important to track incoming raw material defects or work defects, and it is important to improve suppliers or work sites according to the results. The core task of the smart factory is to build an integrated data hub to process storage, management, and analysis in real time, and to manage cluster processes, energy, environment, and safety. In order to improve reliability through accurate analysis and collection of production data by real-time monitoring of production site management for electronic parts-related small and medium-sized enterprises (SMEs), the establishment of a smart factory is essential. This paper was developed to be utilized in the construction by defining the system configuration method, smart factory-related technology and application cases, considering the characteristics of SMEs related to electronic components that want to introduce a smart factory.

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

Process and Quality Data Integrated Analysis Platform for Manufacturing SMEs (중소중견 제조기업을 위한 공정 및 품질데이터 통합형 분석 플랫폼)

  • Choe, Hye-Min;Ahn, Se-Hwan;Lee, Dong-Hyung;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.176-185
    • /
    • 2018
  • With the recent development of manufacturing technology and the diversification of consumer needs, not only the process and quality control of production have become more complicated but also the kinds of information that manufacturing facilities provide the user about process have been diversified. Therefore the importance of big data analysis also has been raised. However, most small and medium enterprises (SMEs) lack the systematic infrastructure of big data management and analysis. In particular, due to the nature of domestic manufacturing companies that rely on foreign manufacturers for most of their manufacturing facilities, the need for their own data analysis and manufacturing support applications is increasing and research has been conducted in Korea. This study proposes integrated analysis platform for process and quality analysis, considering manufacturing big data database (DB) and data characteristics. The platform is implemented in two versions, Web and C/S, to enhance accessibility which perform template based quality analysis and real-time monitoring. The user can upload data from their local PC or DB and run analysis by combining single analysis module in template in a way they want since the platform is not optimized for a particular manufacturing process. Also Java and R are used as the development language for ease of system supplementation. It is expected that the platform will be available at a low price and evolve the ability of quality analysis in SMEs.

A Study on Workers' Risk-Aware Smart Bands System in Explosive Areas (폭발위험지역 근로자 위험 인지형 스마트밴드시스템에 대한 연구)

  • Lee, Byong-Kwon
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2019
  • Research is underway on services and systems that provide real-time alerts for suffocating gases and potentially explosive materials, but currently smart bend type services are lacking. This study supports real-time identification of explosion hazards due to static electricity in the workplace and immediate elimination of accident occurrence factors, real-time monitoring of worker status and workplace hazards (oxygen, hazardous chemical concentration), and immediate warning and data in case of danger. We propose a method of establishing an accident prevention system through analysis. In this way, various accidents that may occur in industrial sites are monitored using IoT-based intelligent sensor nodes, wireless network technology, data processing middleware, and integrated control system, and real-time risk information at the industrial sites is prevented and accidents are prevented. By supporting a safe working environment, the company can significantly reduce costs compared to post-procurement costs.

Implementation of Educational Service for Environmental Saver using Smart Device (스마트 기기를 활용한 환경 지킴이 교육 서비스 구현)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Various efforts are being made to live a Green life began to recognize an importance of eco-friendly living. In this paper, we have designed and implemented a mobile-based environmental keeping education service, which is offered well-defined category searching and environmental outreach related designed categories, for the purpose of supporting distribution of educational application. The implemented prototype system not only plays a function of environmental pollution report, related to simple environmental stewardship schemes, but also provides environmental monitoring service and integrated educational system supporting certified online volunteer activity. This study provides an one of famous methods to the youth for environmental monitoring education system based on mobile environments, and suggests an improvement to the environmental education for schools students.

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

IoT Enabled Smart Emergency LED Exit Sign controller Design using Arduino

  • Jung, Joonseok;Kwon, Jongman;Mfitumukiza, Joseph;Jung, Soonho;Lee, Minwoo;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2017
  • This paper presents a low cost and flexible IoT enabled smart LED controller using Arduino that is used for emergency exit signs. The Internet of Things (IoT) is become a global network that put together physical objects using network communications for the purpose of inter-communication of devices, access information on internet, interaction with users as well as permanent connected environment. A crucial point in this paper, is underlined on the potential key points of applying the Arduino platform as low cost, easy to use microcontroller with combination of various sensors applied in IoT technology to facilitate and establishment of intelligent products. To demonstrate the feasibility and effectiveness of the system, devices such as LED strip, combination of various sensors, Arduino, power plug and ZigBee module have been integrated to setup smart emergency exit sign system. The general concept of the proposed system design discussed in this paper is all about the combination of various sensor such as smoke detector sensor, humidity, temperature sensor, glass break sensors as well as camera sensor that are connected to the main controller (Arduino) for the purpose of communicating with LED exit signs displayer and dedicated PC monitors from integrated system monitoring (controller room) through gateway devices using Zig bee module. A critical appraisal of the approach in the area concludes the paper.