• 제목/요약/키워드: Smart insole

검색결과 25건 처리시간 0.02초

스마트인솔기술의 시장동향 및 사업화 기회 (Market trends and business opportunities of the smart insole technology)

  • 박재수;박정용
    • 한국정보통신학회논문지
    • /
    • 제20권7호
    • /
    • pp.1389-1397
    • /
    • 2016
  • 본 연구는 스마트인솔기술의 사업화기회를 분석하였다. 인솔에 압력감응센서, 가속도센서가 응용되어 발과 신체의 균형을 만들고 또한 엔터테인먼트(스포츠, 오락 등) 및 헬스케어용으로 활용되면서 기술의 스마트화를 확장하고 있다. 일례로 스마트인솔은 센서가 측정한 무게 값을 스마트폰으로 전송해 잘못된 보행습관을 고칠 수 있으며 운동시에는 무게중심 이동상황을 측정해 알려줌으로써 자세교정에 도움을 준다. 그럼에도 불구하고 스마트인솔기술은 엔터테인먼트 및 헬스케어 시장에서 뚜렷한 경계를 지니지 못하고 있다. 그것은 기능의 유사성에 따른 것으로써 피트니스밴드, 스마트양말, 스마트신발 등이 스마트인솔의 혜택을 대체할 수도 있기 때문이다. 스마트인솔의 사업화 기회는 스마트인솔 그 자체보다 심전도, 체온, 혈압 등에 관한 솔루션서비스의 도구로 위치할 것이다.

The reliability test of a smart insole for gait analysis in stroke patients

  • Seo, Tae-Won;Lee, Jun-Young;Lee, Byoung-Hee
    • 대한물리치료과학회지
    • /
    • 제29권1호
    • /
    • pp.30-40
    • /
    • 2022
  • Background: This study analyzed the reliability of smart guides for gait analysis in patients with stroke. Design: Cross-sectional study. Methods: The participants of the study were 30 patients with stroke who could walk more than 10 m and had an MMSE-K test score of ≥24. Prior to the experiment, the subjects or their guardians entered their demographic characteristics including gender, age, height, weight into the prepared computer. The experiment was conducted in a quiet, comfortable, and independent location, and the patient was reminded of the equipment description, precautions, and safety rules for walking. A smart insole was inserted into the shoes of the patients and the shoes were put on before the patients walked three times on the 5-m gait analysis system mat installed in the laboratory. Results: The reliability of the equipment was compared with that of the gait analysis system, and the results of this study are as follows: among the gait analysis items, velocity had an ICC=0.982, the cadence had an ICC=0.905, the swing phase on the side of the gait cycle had an ICC=0.893, the swing phase on the side of the gait had an ICC=0.839, that on the non-affected side had an ICC=0.939, single support on the affected side had an ICC=0.812, and support on the non-affected side had an ICC=0.767. Conclusion: The results of this study indicate no statistical difference between the smart insole and the gait analysis system. Therefore, it is believed that real-time gait analysis through smart insole measurement could help patients in rehabilitation.

Analysis Software based on Center of Pressure to Improve Body Balance using Smart Insole

  • Moon, Ho-Sang;Goo, Se-Jin;Byun, Sang-Kyu;Shin, Sung-Wook;Chung, Sung-Taek
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.202-208
    • /
    • 2020
  • Body balance necessary for ordinary daily activities can be undermined by diverse causes. In this study, as a way to control such a problem, we have produced smart insole as a wearable device in the form of insole and developed analysis software evaluating body balance, which measures ground reaction force applied to each area of sole and Center of Pressure (COP). The software visualized changes in COP positions while a user was moving and average COP positions, and it is also capable of measuring the COP values in the Anterior-Posterior (AP) and Medial-Lateral (ML) areas of feet. Through gait analysis, it can analyze the time of walking, strides, speed, COP trajectory while walking, etc. In addition, we have developed training contents for body balance improvement designed in consideration of Y-Balance Test and Timed Up and Go (TUG) Test. They were established in virtual reality similar to daily living environment so that people can expect more effective training results regardless of places.

Evaluation of Ergonomic Performance of Medical Smart Insoles

  • Yi, Jae-Hoon;Lee, Jin-Wook;Seo, Dong-Kwon
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 2022
  • Objective: This study was to resolve the limitations of the experimental environment and to solve the shortcomings of the method of measuring human gait characteristics using optical measuring instruments. Design: A cross-sectional study. Methods: Fifteen healthy adults without a history of orthopedic surgery on the lower extremities for the past 6 months were participated. They were analyzed gait variables using the smart guide and the 3D image analysis at the same time, and their results were compared. Visual-3D was used to calculate the analysis variables. Results: The reliability and validity of the data according to the two measuring instruments were found to be very high; gait speed(0.85), cycle time(0.99), stride time of both feet(0.98, 0.97) stride legnth of both feet(0.86, 0.88) stride per minute of both feet(0.99, 0.96), foot speed of both feet(0.90, 0.91), step time of both feet(0.77, 0.71), step per minute(0.72, 0.74), stance time of both feet(0.96, 0.97), swing time of both feet(0.93, 0.79), double step time(0.81), initial double step time(0.84) and terminal step time(0.76). Conclusions: In the case of the smart insole, which measures human gait variables using the pressure sensor and inertial sensor inserted in the insole, the reliability and validity of the measured data were found to be very high. It can be used as a device to replace 3D image analysis when measuring pathological gait.

스마트 슈즈의 에너지 하베스팅 기능향상을 위한 복합재료 프레임 특성평가 (Characterization of Composite Frame for Enhancing Energy Harvesting Function of a Smart Shoes)

  • 이호석;정인준;장승환
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.400-405
    • /
    • 2021
  • 본 연구에서는 인장 시 에너지 하베스팅을 하는 Polyvinylidene Fluoride(PVDF) 리본 하베스터를 신발에 접목한 스마트 슈즈의 에너지 하베스팅 효율을 증가시키기 위한 복합재료 프레임을 설계하였다. 프레임의 하중방향 변형량을 최소화하기 위해 이방성 재료인 탄소 연속 섬유를 사용하여 설계하고 3D 프린터를 이용하여 복잡한 형상을 제작하였다. 보행 시 발생하는 하중에 의한 안창과 중창의 변형량을 계산하기 위해 스프링 요소를 이용하여 안창과 중창을 모델링 하였다. 유한요소 해석을 사용하여 보행 시 스마트 슈즈에 장착된 리본형 하베스터의 인장량을 계산하였다. 예측된 하베스터의 최종 인장 길이 정보는 스마트 슈즈의 에너지 하베스팅 효율 증대에 활용할 수 있을 것으로 기대된다.

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Gait event detection algorithm based on smart insoles

  • Kim, JeongKyun;Bae, Myung-Nam;Lee, Kang Bok;Hong, Sang Gi
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.46-53
    • /
    • 2020
  • Gait analysis is an effective clinical tool across a wide range of applications. Recently, inertial measurement units have been extensively utilized for gait analysis. Effective gait analyses require good estimates of heel-strike and toe-off events. Previous studies have focused on the effective device position and type of triaxis direction to detect gait events. This study proposes an effective heel-strike and toe-off detection algorithm using a smart insole with inertial measurement units. This method detects heel-strike and toe-off events through a time-frequency analysis by limiting the range. To assess its performance, gait data for seven healthy male subjects during walking and running were acquired. The proposed heel-strike and toe-off detection algorithm yielded the largest error of 0.03 seconds for running toe-off events, and an average of 0-0.01 seconds for other gait tests. Novel gait analyses could be conducted without suffering from space limitations because gait parameters such as the cadence, stance phase time, swing phase time, single-support time, and double-support time can all be estimated using the proposed heel-strike and toe-off detection algorithm.

층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가 (Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors)

  • 민승남;이희란
    • 한국의류학회지
    • /
    • 제47권1호
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.29-38
    • /
    • 2022
  • 본 논문에서는 멀티 센서가 장착된 스마트 인솔로 측정한 보행 데이터에 대해 앙상블 딥러닝 네트워크를 이용하여 보행의 타입을 분류하는 시스템을 제안한다. 보행 타입 분류 시스템은 인솔에 의해 측정된 데이터를 정규화하는 부분과 딥러닝 네트워크를 이용하여 보행의 특징을 추출하는 부분, 그리고 추출된 특징을 입력으로 보행의 타입을 분류하는 부분으로 구성되어 있다. 서로 다른 특성을 가지는 CNN과 LSTM을 기반으로 하는 네트워크를 독립적으로 학습하여 두 종류의 보행 특징 맵을 추출하였으며, 각각의 분류 결과를 결합하여 최종적인 앙상블 네트워크의 분류 결과를 도출하였다. 20~30대 성인의 걷기, 뛰기, 빠르게 걷기, 계단 오르기와 내려가기, 언덕 오르기와 내려가기의 7종류의 보행에 대해, 스마트 인솔을 이용하여 실측한 멀티 센서 데이터를 제안한 앙상블 네트워크로 분류해 본 결과 90% 이상의 높은 분류율을 보이는 것을 확인하였다.

균형과 보행분석을 위한 스마트 인솔의 신뢰도와 타당도 분석 (The Reliability and Validity of Smart Insole for Balance and Gait Analysis)

  • 이병권;한동욱;김창용;김기영;박대성
    • 대한통합의학회지
    • /
    • 제9권4호
    • /
    • pp.291-298
    • /
    • 2021
  • Purpose: The Pedisole is a newly developed shoe-mounted wearable assessment system for analyzing balance and gait. This study aimed to determine the reliability and validity of the parameters provided by the system for static balance and gait analysis of healthy adults. Methods: This study included 38 healthy adults (22.4±1.9 years) with no history of injury in the lower limbs. All participants were asked to perform balance and gait tasks for undertaking measurements. For analysis of balance, both the smart Pedisole and Pedoscan systems were concurrently used to analyze the path length of the center of pressure (COP) and the weight ratio of the left and right for 10 s. Gait was measured using the smart Pedisole and GaitRite walkway systems simultaneously. The participants walked at a self-selected preferred gait speed. The cadence, stance time, swing time, and step time were used to analyze gait characteristics. Using the paired t-test, the intra-class coefficient correlation (ICC) was calculated for reliability. The Spearman correlation was used to assess the validity of the measurements. In total, data for balance from 36 participants and the gait profiles of 37 participants were evaluated. Results: There were significant differences between the COP path lengths (p<.050) derived from the two systems, and a significant correlation was found for COP path length (r=.382~.523) for static balance. The ICC for COP path length and weight ratio was found to be greater than .687, indicating moderate agreement in balance parameters. The ICC of gait parameters was found to be greater than .697 except for stance time, and there was significant correlation (r=.678~.922) with the GaitRite system. Conclusion: The newly developed smart insole-type Pedisole system and the related application are useful, reliable, and valid tools for balance and gait analysis compared to the gold standard Pedoscan and the GaitRite systems in healthy individuals.