• Title/Summary/Keyword: Smart farm data

Search Result 221, Processing Time 0.02 seconds

Designing an Agricultural Data Sharing Platform for Digital Agriculture Data Utilization and Service Delivery (디지털 농업 데이터 활용 및 서비스 제공을 위한 농산업 데이터 공유 플랫폼 설계)

  • Seung-Jae Kim;Meong-Hun Lee;Jin-Gwang Koh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This paper presents the design process of an agricultural data sharing platform intended to address major challenges faced by the domestic agricultural industry. The platform was designed with a user interface that prioritizes user requirements for ease of use and offers various analysis techniques to provide growth prediction for field environment, growth, management, and control data. Additionally, the platform supports File to DB and DB to DB linkage methods to ensure seamless linkage between the platform and farmhouses. The UI design process utilized HTML/CSS-based languages, JavaScript, and React to provide a comprehensive user experience from platform login to data upload, analysis, and detailed inquiry visualization. The study is expected to contribute to the development of Korean smart farm models and provide reliable data sets to agricultural industry sites and researchers.

Development of Smart Digital Agriculture Technology for Food Crop Production in Korea-The Path Forward Based on Expert Feedback (식량작물 생산에 대한 스마트디지털 농업기술의 발전 방향 - 전문가 설문조사 연구)

  • Song, Ki Eun;Jung, Jae Gyeong;Cho, Seungho;Kim, Jae Yoon;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Building self-sustainable rural infrastructure and environment through smart digital agriculture technology innovation is one of the major goals of the Korean agricultural administration as a part of the nation's 4th industry revolution. To identify areas for improving and effectively investing in the acceleration of rural development, 207 experts in the areas of crop science and smart digital agriculture technology were interviewed for their opinions and suggestions on 22 questions designed to recognize fundamental agricultural issues to be addressed and solutions to advance technology innovation and rural development. Majority of the participants expected smart digital agriculture technologies to resolve major agricultural issues and help build a better rural environment. To overcome technology gaps and resolve issues more effectively, further investment in training new technology experts and building stronger agricultural technology infrastructure is urgent, and persistent and systematic support from agricultural administration appears to be the key for accelerating the process. While the leading global groups of both public and private sectors have advanced their technologies beyond the field application stage, most of the Korean technologies remain at the early pilot stage. Aging population and lack of labor in rural areas, unknown future climate change, and challenges in sustainable rural development are expected to be resolved by smart digital agriculture technologies. Technological innovations by research institutes should be promptly deployed in the crop production field, and farm training systemically organized by local technology centers can accelerate farming revolution. Standardization of equipment and data systems is another key to the success of digitalization of food crop production and food supply chains nationwide.

A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm (스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing (스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

ICT Convergenced Cascade-type Incubator for mass production of microalgae (미세조류 대량생산을 위한 ICT 융합 계단식 연속 배양 장치)

  • Lee, Geon Woo;Lee, Yong Bok;Yoo, Yong Jin;Baek, Dong Hyun;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.379-386
    • /
    • 2021
  • This study was undertaken to develop a cascade-type continuous culture system (CCCS) that combines both ICT and biotechnology (BT), for the mass production of microalgae. This system is capable of maintaining the essential culture conditions of pH, temperature, carbon dioxide, and illuminance control, which are key parameters for the growth of microalgae, and is economical for producing microalgae regardless of the season or location. It has the added advantage of providing stable and high productivity. In the current study, this system was applied to culture microalgae for 71 days, with subsequent analysis of the experimental data. The initial O.D. of the culture measured from incubator 1 was 0.006. On the 71st day of culture, the O.D.s obtained were 0.399 (incubator 1), 0.961 (incubator 2), 0.795 (incubator 3), and 0.438 (incubator 4), thereby confirming the establishment of continuous culture. Thus, we present a smart-farm based on ISMC (in-situ monitoring and control) for a mass culture method. We believe that this developed technology is suitable for commercialization, and has the potential to be applied to hydroponics-based cultivation of microalgae and cultivation of high-value-added medicinal plants as well as other plants used in functional foods, cosmetics, and medical materials.

Evaluation of Parameter Estimation Method for Design Rainfall Estimation (설계강우량 산정을 위한 매개변수 추정방법 평가)

  • Kim, Kwihoon;Jun, Sang-Min;Jang, Jeongyeol;Song, Inhong;Kang, Moon-Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.87-96
    • /
    • 2021
  • Determining design rainfall is the first step to plan an agricultural drainage facility. The objective of this study is to evaluate whether the current method for parameter estimation is reasonable for computing the design rainfall. The current Gumbel-Kendall (G-K) method was compared with two other methods which are Gumbel-Chow (G-C) method and Probability weighted moment (PWM). Hourly rainfall data were acquired from the 60 ASOS (Automated Synoptic Observing System) stations across the nation. For the goodness-of-fit test, this study used chi-squared (𝛘2) and Kolmogorov-Smirnov (K-S) test. When using G-K method, 𝛘2 statistics of 18 stations exceeded the critical value (𝑥2a=0.05,df=4=9.4877) and 10, 3 stations for G-C method, PWM method respectively. For K-S test, none of the stations exceeded the critical value (Da=0.05n=0.19838). However, G-K method showed the worst performances in both tests compared to other methods. Subsequently, this study computed design rainfall of 48-hour duration in 60 ASOS stations. G-K method showed 5.6 and 6.4% higher average design rainfall and 15.2 and 24.6% higher variance compared to G-C and PWM methods. In short, G-K showed the worst performance in goodness-of-fit tests and showed higher design rainfall with the least robustness. Likewise, considering the basic assumptions of the design rainfall estimation, G-K is not an appropriate method for the practical use. This study can be referenced and helpful when revising the agricultural drainage standards.

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.

Design and Implementation of Self-installing Agricultural Automation System for Remote Monitoring and Control Based on LPWA Technology (저전력 장거리 무선통신기술(LPWA) 기반 원격감시 및 제어가 가능한 자가설치형 농업 자동화 시스템 설계 및 구현)

  • Baek, JaeGu;Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In this paper, we designed and implemented Thing Connected-Green, a self-installing agricultural automation system capable of remote monitoring and control based on Low Power Wide Area communication technology (LPWA). Farming requires water, sunlight, soil, fertilizer, temperature control, etc., and these elements can be remotely monitored and controlled using an automated system. Using this system, it is possible to construct an agricultural automation system which can be optimized according to the kind of plant and cultivation environment from vinyl house to flower garden. The information gathered from the sensor is stored in the server through the gateway, and the optimal cultivation environment can be set and operated using the smart phone based on the big data.

Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods (무인항공기와 GIS를 이용한 논 가뭄 발생지역 분석)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.21-28
    • /
    • 2017
  • The main goal of this paper is to assess application of UAV (Unmanned Aerial Vehicle) remote sensing and GIS based images in detection and measuring of rice field drought area in South Korea. Drought is recurring feature of the climatic events, which often hit South Korea, bringing significant water shortages, local economic losses and adverse social consequences. This paper describes the assesment of the near-realtime drought damage monitoring and reporting system for the agricultural drought region. The system is being developed using drought-related vegetation characteristics, which are derived from UAV remote sensing data. The study area is $3.07km^2$ of Wonbuk-myeon, Taean-gun, Chungnam in South Korea. UAV images were acquired three times from July 4 to October 29, 2015. Three images of the same test site have been analysed by object-based image classification technique. Drought damaged paddy rices reached $754,362m^2$, which is 47.1 %. The NongHyeop Agricultural Damage Insurance accepted agricultural land of 4.6 % ($34,932m^2$). For paddy rices by UAV investigation, the drought monitoring and crop productivity was effective in improving drought assessment method.

Analysis on Big data, IoT, Artificial intelligence using Keyword Network (빅데이터, IoT, 인공지능 키워드 네트워크 분석)

  • Koo, Young-Duk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1137-1144
    • /
    • 2020
  • This paper aims to provide strategic suggestions by analyzing technology trends related to big data, IoT, and artificial intelligence. To this end, analysis was performed using the 2018 national R&D information, and major basic analysis and language network analysis were performed. As a result of the analysis, research and development related to big data, IoT, and artificial intelligence are being conducted by focusing on the basic and development stages, and it was found that universities and SMEs have a high proportion. In addition, as a result of the language network analysis, it is judged that the related fields are mainly research for use in the smart farm and healthcare fields. Based on these research results, first, big data is essential to use artificial intelligence, and personal identification research should be conducted more actively. Second, they argued that full-cycle support is needed for technology commercialization, not simple R&D activities, and the need to expand application fields.