• Title/Summary/Keyword: Smart energy

Search Result 1,864, Processing Time 0.022 seconds

Analyzing Smart Grid Energy Data using Hadoop Based Big Data System (하둡기반 빅데이터 시스템을 이용한 스마트그리드 전력데이터 분석)

  • Cho, YoungTak;Lee, WonJin;Lee, Ingyu;On, Byung-Won;Choi, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • With the increasing popularity of Smart Grid infrastructure, it is much easier to collect energy usage data using AMI (Advanced Measuring Instrument) from residential housing, buildings and factories. Several researches have been done to improve an energy efficiency by analyzing the collected energy usage data. However, it is not easy to store and analyze the energy data using a traditional relational database management system since the data size grows exponentially with an increasing popularity of Smart grid infrastructure. In this paper, we are proposing a Hadoop based Big data system to store and analyze energy usage data. Based on our limited experiments, Hadoop based energy data analysis is three times faster than that of a relational database management system based approach with the current system.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Self-Adaptive Smart Grid with Photovoltaics using AiTES (AiTES를 사용한 태양광 발전이 포함된 자가 적응적 스마트 그리드)

  • Park, Sung-sik;Park, Young-beom
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.38-46
    • /
    • 2018
  • Smart Grid is an intelligent power grid for efficiently producing and consuming electricity through bi-directional communication between power producers and consumers. As renewable energy develops, the share of renewable energy in the smart grid is increasing. Renewable energy has a problem that it differs from existing power generation methods that can predict and control power generation because the power generation changes in real time. Applying a self-adaptative framework to the Smart Grid will enable efficient operation of the Smart Grid by adapting to the amount of renewable energy power generated in real time. In this paper, we assume that smart villages equipped with photovoltaic power generation facilities are installed, and apply the self-adaptative framework, AiTES, to show that smart grid can be efficiently operated through self adaptation framework.

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.

Trends of Daylight Environment for Office Spaces Based on Smart-Window Installation Settings (스마트 윈도우 설치 속성에 따른 사무공간의 주광 환경 추이)

  • Jae-Hyang Kim;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2023
  • Smart windows are capable of varying their visible light transmittance (VLT) in response to changing environmental conditions. The VLT variability of architectural windows is highly valuable because it enables indoor lighting and energy environments to align with external changes. However, challenges such as high installation costs and assurance of glass visibility have prompted the exploration of alternative solutions, including models incorporating partially applied smart windows., Prior research focused on useful daylight illuminance (UDI) analysis for south-facing office buildings, pointing out suitable areas for smart-window implementation to enhance lighting control. In this study, we broadened this scope by determining optimal smart-window application zones under changing building orientation. Furthermore, we studied the correlation between building orientation and smart-window deployment areas.

Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

  • Peng, Zhuoyin;Liu, Zhou;Chen, Jianlin;Liao, Lida;Chen, Jian;Li, Cong;Li, Wei
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.718-724
    • /
    • 2018
  • With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

Using ICT for Mongolia's sustainable development in energy industry

  • Tungalag, Azjargal;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • v.2 no.1
    • /
    • pp.21-52
    • /
    • 2017
  • Nowadays every technology is becoming smarter. Consequently, intensive use of ICT in the whole industries and cities enables a sustainable approach to meet enormous productivity, efficiency, transparency and conservation of natural recourses. Likewise, the role of ICT in terms of controlling, monitoring in the energy industry allows integrating potential renewables, bulk energy conservation and reliable optimized operation in the entire system. In this paper outlines challenging issues in renewable energy integration in Mongolia and proposes potential recommendations and conclusions. The author investigated the main technologies used in energy industry mainly smart grid, challenges and policy aspect in Mongolian energy sector by using the primary and secondary approach with case studies and literature based methodologies. Based on the policy aspect and current implementation of smart grid, the paper tries to address the readiness for the main application and future potential ICT driven applications. Furthermore, it concluded that ICT convergence is demanded to overcome the current vulnerabilities and significant momentum to leave behind by using its potential energy recourses and favorable geographical state. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in future planning. Even tough, in order to develop a smart grid and integrating renewables firstly set an appropriate market structure, ICT will key enabler to make energy system more profitable and sustainable. Regarding the result of this study, ICT deployment contribution is a huge demand for future opportunities energy in Mongolia.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Energy Saving System using Occupancy Sensors and Smart Plugs (재실감지 센서와 스마트 플러그를 이용한 에너지 절약 시스템)

  • Jung, Kyung Kwon;Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.161-167
    • /
    • 2015
  • This paper presented an occupancy-based energy saving system for appliance energy saving in smart house. The developed system is composed of a sensing system and a home gateway system. The sensing system is set of wireless sensor nodes which have pyroelectric infrared (PIR) sensor to detect a motion of human and set of smart plugs which measure the current using CT (current transformer) sensor and send the current to home gateway wirelessly. We measured current consumption of appliances in real time using smart plugs, and checked the occupation of residents using occupancy sensors installed on the door and room. The proposed system saves electric energy to switch off the supply power of unnecessary usages in the unoccupied spaces. Experiments conducted have shown that electric energy usage of appliances can be saved about 34% checked by using occupation.

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.