• Title/Summary/Keyword: Smart Work Center

Search Result 151, Processing Time 0.028 seconds

Instrumentation on structural health monitoring systems to real world structures

  • Teng, Jun;Lu, Wei;Wen, Runfa;Zhang, Ting
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.151-167
    • /
    • 2015
  • Instrumentation on structural health monitoring system imposes critical issues for applying the structural monitoring system to real world structures, for which not only on the configuration and geometry, but also aesthetics on the system to be monitored should be considered. To illustrate this point, two real world structural health monitoring systems, the structural health monitoring system of Shenzhen Vanke Center and the structural health monitoring system of Shenzhen Bay Stadium in China, are presented in the paper. The instrumentation on structural health monitoring systems of real world structures is addressed by providing the description of the structure, the purpose of the structural health monitoring system implementation, as well as details of the system integration including the installations on the sensors and acquisition equipment and so on. In addition, an intelligent algorithm on stress identification using measurements from multi-region is presented in the paper. The stress identification method is deployed using the fuzzy pattern recognition and Dempster-Shafer evidence theory, where the measurements of limited strain sensors arranged on structure are the input data of the method. As results, at the critical parts of the structure, the stress distribution evaluated from the measurements has shown close correlation to the numerical simulation results on the steel roof of the Beijing National Aquatics Center in China. The research work in this paper can provide a reference for the design and implementation of both real world structural health monitoring systems and intelligent algorithm to identify stress distribution effectively.

Smartphone-based Wavelength Control LED Lighting System according to the Sleep-Wake Cycle of Occupants (재실자의 수면-각성 주기에 따른 스마트폰 기반 파장제어 LED 조명시스템)

  • Kim, Yang-Soo;Kwon, Sook-Youn;Hwang, Jun;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Melatonin hormone involved in human's circadian rhythm adjustment sensitively responds to light's specific short wavelength ratio. A shift worker's circadian rhythm disturbance and sleep disorder are caused by the existing lighting conditions, whose short wavelength ratio is fixed. The life pattern of a shift worker changes irregularly because of irregular working hours and the same lighting environment; thus, his/her concentration is reduced. For such a reason, negative effects ensue to the detriment of healthy everyday life, including a high risk of accidents or having unsound sleep after leaving work. A smartphone-based wavelength control LED lighting system that targets shift workers and that can easily measure and control lighting suitable for wake-sleep cycle, according to working hours and closing hours, is proposed in this paper. First, after the light characteristics of LED lighting that changes depending on light control ratio are measured through the color sensor installed on the smartphone and the externally-linked Mini-Spectrometer, they are stored in the database. Based on the stored optical characteristics data, the measurement module and light control module are implemented. Lighting is offered using a control ratio having the maximum rate of short wavelength in consideration of the target illuminance, classified according to work type by identifying working hours as time when waking is required for shift workers. After a shift work leaves work, the amount of lighting is varied, using a control ratio having a minimum short wavelength rate so that a shift worker can enter the sleep state naturally.

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.

Effects of Fermented Oyster Extract Supplementation on Body Composition, Muscular Strengths and Blood Muscle Growth Fact ors in Elderly Women (발효굴 섭취가 중년 여성의 신체조성, 근력 및 혈중 근성장 인자에 미치는 영향)

  • Park, Joung-Hyun;Kim, Dong-Seok;Lee, Bae-Jin;Her, Jung-Soo;Jeon, Byeong Hwan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.76-85
    • /
    • 2021
  • Crassostrea gigas were fermented using L. brevis BJ20 to prepare fermented oyster extract (FO). The participants of this study were randomly assigned to FO and placebo (CON) groups. The FO group was given 1.0 g of FO supplementation and the CON group was given sucrose each day for eight weeks. The effects of FO supplementation on body composition, muscula r strength, and blood factors associated with muscle growth were assessed. The FO supplement was enriched with arginine (6,183.3 mg), phenylalanine (217.9 mg), leucine (122.6 mg), isoleucine (59.8 mg), valine (16.4 mg), and γ-amino butyric acid (GABA, 1,053.7 mg). The total fat was significantly decreased in the FO group compared with the CON group (p < 0.05). 60D/S Ext.T/Wo rk and 60D/S Flex.T/Work concomitantly with 60D/S Flex.PeakTQ/BW were significantly increase d by FO treatment compared to CON group (p < 0.05). However, posture stability was not significa ntly different between the groups. The levels of angiotensin-converting enzyme were significantly decreased within the FO group (p < 0.05). The FO group showed significantly decreased levels of tumor necrosis factor-α and increased levels of human growth hormone compared with the CON group (p < 0.01). The levels of insulin-like growth factor-1 increased (p < 0.01) in the FO group while that of creatine kinase and triglyceride decreased significantly compared with the CON group (p < 0.05). These results demonstrated that FO supplementation is effective in preventing sarcopenic obesity and maintaining and strengthening muscular function in elderly wom en. Hence, FO supplements can be used as functional ingredients for these benefits.

Photometric Transformation from RGB Bayer Filter System to Johnson-Cousins BVR Filter System

  • Park, Woojin;Pak, Soojong;Shim, Hyunjin;Le, Huynh Anh N.;Im, Myungshin;Chang, Seunghyuk;Yu, Joonkyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.43.2-43.2
    • /
    • 2015
  • The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  • PDF

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Development of Control System for Pesticide Control Management (드론방제 관리를 위한 관제시스템 개발)

  • Dae-Soon Kim;Yun-Seong Lee;Jeong-seok Yoon;Snag-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • Recently, in the era of the 4th industry, the era of smart agriculture is progressing with the use of related core technologies in the agricultural sector. As a representative example, the use of drones for pest control is increasing, and the use in the agricultural sector is increasing, and the existing control method is being changed by replacing the aging population. However, the importance of control management is increasing due to the increase in agricultural control drones. In this study, various civil complaints are occurring due to the non-standardization of the control operator's work instructions, control area allocation, and control settlement. In this study, we try to resolve civil complaints by computerizing various tasks that occur from the drone control manager's point of view and computerizing them so that they can be managed. Through this, it is intended to manage the control area for large areas and use it as basic data for the development of control management system.

In Silico Analysis and Biochemical Characterization of Streptomyces PET Hydrolase with Bis(2-Hydroxyethyl) Terephthalate Biodegradation Activity

  • Gobinda Thapa;So-Ra Han;Prakash Paudel;Min-Su Kim;Young-Soo Hong;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1836-1847
    • /
    • 2024
  • Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40℃, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.

A Study on the Digital Construction Information Structure for the Implementing Digital Twin of Road Construction Sites (도로 건설현장의 디지털트윈 구현을 위한 디지털 건설정보구조에 관한 연구)

  • Taewon Chung;Hyon Wook Ji;Jin Hoon Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.153-166
    • /
    • 2024
  • The digitalization of tasks for smart construction requires the smooth exchange of digital data among stakeholders to be effective, but there is a lack of digital data standardization and utilization methods. This paper proposes a digital construction information structure to transform information from road construction sites into digital formats. The study targets include significant tasks, such as work planning, scheduling, safety management, and quality control. The key to the construction information structure is separating construction information into objects and activities, defining unit works by combining these two types of information to ensure flexibility in representing and modifying construction information. The objects and activities have their respective hierarchical structures, which are defined flexibly to match the actual content. This structure achieves both efficiency and detail. The pilot structure was applied to highway construction projects and implemented digitally using general formats. This study enables the digitalization of road construction processes that closely resemble reality, accelerating the digital transformation of the civil engineering industry by developing a digital twin of the entire road construction lifecycle.