• Title/Summary/Keyword: Smart TMD

Search Result 55, Processing Time 0.026 seconds

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

Self-reliant wireless health monitoring based on tuned-mass-damper mechanism

  • Makihara, Kanjuro;Hirai, Hidekazu;Yamamoto, Yuta;Fukunaga, Hisao
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1625-1642
    • /
    • 2015
  • We propose an electrically self-reliant structural health monitoring (SHM) system that is able to wirelessly transmit sensing data using electrical power generated by vibration without the need for additional external power sources. The provision of reliable electricity to wireless SHM systems is a highly important issue that has often been ignored, and to expand the applicability of various wireless SHM innovations, it will be necessary to develop comprehensive wireless SHM devices including stable electricity sources. In light of this need, we propose a new, highly efficient vibration-powered generator based on a tuned-mass-damper (TMD) mechanism that is quite suitable for vibration-based SHM. The charging time of the TMD generator is shorter than that of conventional generators based on the impedance matching method, and the proposed TMD generator can harvest 16 times the amount of energy that a conventional generator can. The charging time of an SHM wireless transmitter is quantitatively formulated. We conduct wireless monitoring experiments to validate a wireless SHM system composed of a self-reliant SHM and a vibration-powered TMD generator.

Development of Multi-Input Multi-Output Control Algorithm for Adaptive Smart Shared TMD (적응형 스마트 공유 TMD의 MIMO 제어알고리즘개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • A shared tuned mass damper (STMD) was proposed in previous research for reduction of dynamic responses of the adjacent buildings subjected to earthquake loads. A single STMD can provide similar control performance in comparison with two traditional TMDs. In previous research, a passive damper was used to connect the STMD with adjacent buildings. In this study, a smart magnetorheological (MR) damper was used instead of a passive damper to compose an adaptive smart STMD (ASTMD). Control performance of the ASTMD was investigated by numerical analyses. For this purpose, two 8-story buildings were used as example structures. Multi-input multi-output (MIMO) fuzzy logic controller (FLC) was used to control the command voltages sent to two MR dampers. The MIMO FLC was optimized by a multi-objective genetic algorithm. Numerical analyses showed that the ASTMD can effectively control dynamic responses of adjacent buildings subjected to earthquake excitations in comparison with a passive STMD.

Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests

  • Liu, Min;Li, Shouying;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • Solar towers, which often has a large aspect ratio and low fundamental natural frequency, were extremely prone to large amplitude of wind-induced vibrations, especially Vortex-Induced Vibration (VIV). A tiny Tuned Mass Damper (TMD) with conveniently adjustable eddy current damping was specially designed and manufactured for elastic wind tunnel tests of a solar tower. A series of numerical simulations by using the COMSOL software were conducted to determine three key parameters, including the thickness of the back iron plate and the conductive plate (Tb and Tc), the distance between the magnet and the conductive plate (Td). Based on the results of numerical simulations, a tiny TMD was manufactured and its structural parameters were experimentally identified. The optimized values of the tiny TMD can be conveniently realized. The tiny TMD was installed at the top of the elastic test model of a 243-meter-high solar tower, and a series of wind tunnel tests were carried out to examine the effectiveness of the TMD in suppressing wind-induced responses of the test model. The results showed that the wind-induced responses could be obviously reduced by the TMD, especially in the cross-wind direction. The cross-wind RMS and peak responses at the critical wind velocity can be reduced by about 86% and 75%, respectively. However, the maximum reduction of the responses at the design wind velocity is about 45%, obviously less than that at the critical wind velocity.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

Smart tuned mass dampers: recent developments

  • Nagarajaiah, Satish;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.173-176
    • /
    • 2014
  • This special issue focuses on Smart Tuned Mass Dampers (STMD) that are either active or smart or semi-active in nature. Active tuned mass dampers or active mass dampers have found wide acceptance and have been implemented in many tall buildings and long span bridges. Recently researchers have developed a new class of smart tuned mass dampers using either variable stiffness and/or variable damping to effect the change in instantaneous frequency and damping. Since tuning plays a central role in STMDs it is of great current interest thus the topic of this special issue. Discussions of recent active and smart TMD implementations in tall buildings and bridges are also included.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.

Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm

  • Chen, ZY;Meng, Yahui;Wang, Ruei-Yuan;Peng, Sheng-Hsiang;Yang, Yaoke;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.591-598
    • /
    • 2022
  • The article deals with the possibilities of vibration stimulation. Based on the stability analysis, a multi-scale approach with a modified whole-building model is implemented. The motion equation is configured for a controlled bridge with a MDOF (multiple dynamic degrees of freedom) Tuned Mass Damper (M-TMD) system, and a combination of welding, excitation, and control effects is used with its advanced packages and commercial software submodel. Because the design of high-performance and efficient structural systems has been of interest to practical engineers, systematic methods of structural and functional synthesis of control systems must be used in many applications. The smart method can be stabilized by properly controlling the high frequency injection limits. The simulation results illustrate that the multiple modeling method used is consistent with the accuracy and high computational efficiency. The M-TMD system, even with moderate reductions in critical pressure, can significantly suppress overall feedback on an unregulated design.