• Title/Summary/Keyword: Smart Sensor

Search Result 2,131, Processing Time 0.029 seconds

Development of Baby Care Mobile Application Using Smart Sensor (스마트 센서를 이용한 Baby Care 모바일 어플리케이션 개발)

  • Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.643-647
    • /
    • 2015
  • Nowadays, ubiquitous technology which combines sensors and network technology is emerging and it is called ubiquitous sensor network (USN). In this paper, mobile application for baby care using smart sensor is proposed. The proposed mobile application consists of mobile networks to transfer the information. It detects various information such as falling detecting, crying and fever detecting of infants. It keeps infants from external threats. The developed mobile application will be examined by simulation.

Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization (PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발)

  • Lim, Seung Ju;Bae, Jong Hyuk;Jang, Seong Jin;Lim, Jee Young;Park, Keun Hae;Ko, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.

A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement (탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구)

  • Kang, I.P.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

Arduino-based Flex Sensor Device for Smart Healthcare (아두이노 기반의 구부림센서를 이용한 가상현실 손가락 모델링)

  • Moon, Jae-ung;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.102-103
    • /
    • 2021
  • With the development of medical IT technology, personalized medical services are increasing in the silver industry era through the development of smart healthcare business. Therefore, in this paper, using various sensors in the Arduino environment, we implemented a finger modeling that can perform joint rehabilitation exercise that can provide personalized smart healthcare services. By measuring the activity of each individual finger joint using an Arduino-based flex sensor, it is intended to be used for personalized rehabilitation exercise in the smart healthcare field in the future.

  • PDF

Smart-clothes System for Realtime Privacy Monitoring on Smart-phones (스마트폰에서 실시간 개인 모니터링을 위한 스마트의류 시스템)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Park, Won-Ki;Park, Soo-Hyun;Lee, Sung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.962-971
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smart-phone App. This smart-clothes is able to monitor wearer users' health condition and activity levels through the gyro, temp and acceleration sensor. Sensed vital signs are transmitted to a bluetooth-enabled smart-phone in the smart-clothes. Thus, users are able to have real time information about their user condition, including activities level on the smart-application. User context reasoning and behavior determine is very difficult using multi-sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used Multi-black Filter and SVM processing behavior for 3-axis value as a representative value of one.

The Development of Sensor based Healthcare Smart clothing based on usability test (사용성 평가에 기반한 센서 기반 헬스 케어 스마트 의류의 모형 개발)

  • Cho, Ha-Kyung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.11 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • Recently "smart clothing" has been developed more friendly and human centered design. As the diversified studies on physical factors such as comfort, usability, ergonomics and design for wearer have been examined, the smart clothing has been progressed in diverse aspects. In this research, we developed the design prototype of the bio-medical sensor based healthcare smart clothing and efficiency of clothing. As a result of study with developed designed prototypes of qualitative and quantitative tests for wearability and usability, we come up with evaluation items and supplements. In this study, based on result from evaluation on wearability and usability, the design prototype of sensor based healthcare smart clothing was revised.

  • PDF

A Human-Robot Interaction Entertainment Pet Robot (HRI 엔터테인먼트 애완 로봇)

  • Lee, Heejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2014
  • In this paper, a quadruped walking pet robot for human-robot interaction, a robot-controller using a smart phone application program, and a home smart control system using sensor informations providing from the robot are described. The robot has 20 degree of freedom and consists of various sensors such as Kinect sensor, infrared sensor, 3 axis motion sensor, temperature/humidity sensor, gas sensor and graphic LCD module. We propose algorithms for the robot entertainment: walking algorithm of the robot, motion and voice recognition algorithm using Kinect sensor. emotional expression algorithm, smart phone application algorithm for a remote control of the robot, and home smart control algorithm for controlling home appliances. The experiments of this paper show that the proposed algorithms applied to the pet robot, smart phone, and computer are well operated.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

A Study on the Relationship between Ultraviolet Rays and Skin Color Using a Photoplethysmography Sensor

  • So-Yae Hur;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.363-369
    • /
    • 2023
  • In this study, to check the function of managing the severity of ultraviolet rays with a smart watch, a popular health care IT device, It was tested whether measuring heart rate using a PPG(Photoplethysmography) sensor representatively used in a smart watch could tell skin changes caused by ultraviolet rays. Through this experiment, we examined the possibility that the skin color tanned by ultraviolet rays can be determined only by the heart rate measurement function of the PPG sensor. In addition, the possibility of expanding the heart rate measurement function of the PPG sensor to the use of skin condition management was considered. we used an Arduino-based reflective PPG sensor to measure changes in heart rate by selecting body sites with high and low UV rays exposure. A significant value was derived through tests considering factors such as gender, UV exposure, and age. As a result, the study identified the possibility of adding ultraviolet rays and skincare items to future smart watch healthcare items and the possibility of expanding skin measurement methods. It is also possible to suggest the direction of future research.