• Title/Summary/Keyword: Smart Projectile

Search Result 9, Processing Time 0.021 seconds

A Study on the Adaptive Roll Control Scheme for the Top Attack Smart Projectile (상부공격 지능탄의 회전각 적응제어 기법 연구)

  • 홍종태;정수경;최상경
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • An Adaptive Positive Position Feedback method is presented for controlling the roll of the supersonic smart projectile. The proposed strategy combines the attractive attributes of Positive Position Feedback(PPF) of Goh and Caughey, and Lyapunov stability theorem. The parameters of Adaptive-PFF controller are adjusted in an adaptive mauler in order to follow the performance of an optimal reference model. In this way, optimal damping and zero steady-state errors can be achieved even in the presence of uncertain or changing plant parameters. The performance obtained with the Adaptive-PPF algorithm is compared with conventional PPF control algorithm. The results obtained emphasize the potential of Adaptive-PPF algorithm as an efficient means for controlling plants such as supersonic flight systems with uncertainties in real time.

  • PDF

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.

A Precise Projectile Trajectory Registration Algorithm Based on Weighted PDOP (PDOP 가중치 기반 정밀 탄궤적 정합 알고리즘)

  • Shin, Seok-Hyun;Kim, Jong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.502-511
    • /
    • 2016
  • Recently, many kind of smart projectiles are being developed. In case of smart projectile, studying in advance, it uses a navigation data acquired from the GNSS receiver to check its location on the geocentric(WGS84) coordinates and to estimate P.O.I(point of impact). However, because of various error inducing factors, the result of positioning involve some errors. We introduce the advanced algorithm for the reconstruction of a navigation trajectory using weighted PDOP, based on a simulated trajectory acquired from PRODAS. It is very fast and robust to noise and shows reliable output. It can be widely used to estimate an actual trajectory of a projectile.

Development of Code for Numerical Analysis of Interior Ballistics using Eulerian-Lagrangian Approach and SMART scheme (Eulerian-Lagrangian 접근법과 SMART scheme을 이용한 강내탄도 전산해석 코드 개발)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong;Jang, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.349-357
    • /
    • 2010
  • In this paper, a numerical code for the interior ballistics has been investigated. The Eulerian-Lagrangian approach and the SMART scheme have been used in the numerical code for the grain combustion. The translational kinetic energy of the projectile and work done against barrel friction have been considered only. The ghost cell extrapolation method has been used for the chamber change with the projectile movement. The calculation results of the numerical code have been compared and verified through those of IBHVG2 code.

Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition (조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구)

  • Bae, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.