• Title/Summary/Keyword: Smart On-Device

Search Result 1,696, Processing Time 0.027 seconds

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

An Analysis on Key Factors of Mobile Fitness Application by Using Text Mining Techniques : User Experience Perspective (텍스트마이닝 기법을 이용한 모바일 피트니스 애플리케이션 주요 요인 분석 : 사용자 경험 관점)

  • Lee, So-Hyun;Kim, Jinsol;Yoon, Sang-Hyeak;Kim, Hee-Woong
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.117-137
    • /
    • 2020
  • The development of information technology leads to changes in various industries. In particular, the health care industry is more influenced so that it is focused on. With the widening of the health care market, the market of smart device based personal health care also draws attention. Since a variety of fitness applications for smartphone based exercise were introduced, more interest has been in the health care industry. But although an amount of use of mobile fitness applications increase, it fails to lead to a sustained use. It is necessary to find and understand what matters for mobile fitness application users. Therefore, this study analyze the reviews of mobile fitness application users, to draw key factors, and thereby to propose detailed strategies for promoting mobile fitness applications. We utilize text mining techniques - LDA topic modeling, term frequency analysis, and keyword extraction - to draw and analyze the issues related to mobile fitness applications. In particular, the key factors drawn by text mining techniques are explained through the concept of user experience. This study is academically meaningful in the point that the key factors of mobile fitness applications are drawn by the user experience based text mining techniques, and practically this study proposes detailed strategies for promoting mobile fitness applications in the health care area.

A Study on Design and Implementation of Archival Information Services based on Social Network Service in Mobile Environments (모바일 환경에서의 SNS를 활용한 기록정보서비스 설계 및 구현에 관한 연구)

  • Kang, Hye-Kyung;Kim, Yong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.12 no.1
    • /
    • pp.33-58
    • /
    • 2012
  • With technological and cultural changes around web and mobile networks, SNS would be considered as an important tool for information sharing. Especially, SNS represented Facebook and Twitter is being new paradigm for communication. This study seeks to methods to provide a service user participation and cooperation and expands use and access to archival information service through SNS. To achieve the goals, this study proposed a method to provide effective archival information service through literature research. Also, the proposed service was implemented with system design and components.

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

An Efficient Hybrid Lighting Management System Implementation on Multi Protocol (다중 프로토콜 기반의 효율적인 하이브리드 조명관리 시스템 구현)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.550-558
    • /
    • 2013
  • In this paper, we propose an efficient hybrid lighting management system implementation on multiple protocol. The proposed hybrid lighting management system was implemented by configured as the data display part for management and control of lighting device and the data conversion-processing part the communication part of gateway. The data were designed the DB to enable to storage in real-time, and implemented able to manage by real time wireless remote control and schedule setting. The proposed an efficient hybrid lighting management system, it was possible the real-time monitoring and remote lighting control by peristalsis with smart devices and portable PC etc., and it could be obtained reduction effect of energy and electricity, communication cost.

Study on Optimization for Heating System of Sequential Feed-Type Mobile Smart Device Cover Glass Molding Machine (모바일 스마트 기기 덮개 유리 순차이송형 성형기기의 가열시스템 최적화에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Nowadays, flat-shaped cover glass is widely used for mobile devices. However, for its good design and convenience of use, curved cover glass has been demanded. Thus, many companies have tried to produce curved cover glass through the shaving technique, but the production efficiency is very low. Therefore, the molding technique has been adopted to increase the efficiency for the curved-glass production system. For a glass-molding system, several heating blocks are installed, and the flat cover glass is sequentially heated and molded. The production time for the cover glass is very different depending on the heating conditions; thus, the prediction of the production time for different heating conditions should be needed. Therefore, in this study, the computations were performed with different heating conditions (uniform and non-uniform) in the present cover glass-molding machine. For uniform and non-uniform heating conditions, the simple correlation between the heating time and the heater capacity and the heating time to achieve higher durability can be suggested, respectively.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.