• Title/Summary/Keyword: Smart Monitoring

Search Result 1,860, Processing Time 0.039 seconds

Feasibility Study of Developing Ship Engineering Control System based on DDS Middle-ware (DDS 미들웨어 기반의 선박 통합기관감시제어체계 개발 가능성 연구)

  • Seongwon Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.653-658
    • /
    • 2023
  • In systems like the combat management system of a naval ship or smart city of civilians, where many sensors and actuators are connected, the middle-ware DDS (Data Distribution Service) is mainly used to transmit large amounts of data. It is scalable and can effectively respond to the increase in sensors or equipment connected to the system in the future. The engineering control system (ECS), which plays an important role similar to the combat management system of a naval ship, still uses Server-Client model with industrial protocols such as Modbus and CAN (Controller Area Network) bus, to transmit data, which is unfavorable in terms of scalability. However, as automation and unmanned systems advance, more sensors and actuators are expected to be added, necessitating substantial program modification. DDS can effectively address such situations. The purpose of this study is to confirm the development possibility of an integrated monitoring and control system of a ship by using OpenDDS, which follows the OMG (Object Management Group) standard among the middle-ware DDS used in the combat management system. To achieve this goal, field equipment simulators and an ECS server were configured to perform field equipment data input/output and simulation using DDS was performed. The ECS prototype successfully handled data transmission, confirming that DDS is capable of serving as the middle-ware for the ECS of a ship.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service (인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로)

  • Kim, HaYeong;Heo, JeongYun;Kwon, Hochang
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.259-278
    • /
    • 2022
  • With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Comparison of the Awareness of Garden Functions (정원 기능에 대한 인식 비교)

  • Park, Mi-Ok;Choi, Ja-Ho;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.2
    • /
    • pp.34-44
    • /
    • 2020
  • The purpose of this study was to investigate the difference in perceptions between gardens and park functions as recognized by two groups, Group A and Group B, in order to confirm the distinction between concepts and functions and then establish the importance of individual functions. The AHP was used to analyze the importance of each group's perceptions by dividing them into garden and park, Group A and non-Group A, respectively. In Group A, the importance of garden functions were considered in descending order of importance to be cultural function, ecological function, and social function. In the general group, ecological function, cultural function, and social function also appeared, but in a different order of importance. As for the park functions, Group A recognized the importance of functions in a similar order of importance to the gardens: cultural function, ecological function, and social function. Group B thought that social function, ecological function, and cultural function have the same significance. At the major classification level, Group A and Group B emphasized the social function of the parks. Group A recognized the importance of the garden's cultural function as the most important, whereas the general group emphasized the importance of the garden's ecological function. As for the mid-class level, Group A recognized the aesthetic beauty, health, ecological environment protection, and water circulation as important functions of the garden. For Group B, the ecological environment protection, aesthetic beauty, water cycle, and health were important. The concepts and functions of gardens and parks are still largely mixed but are gradually becoming differentiated. As a follow-up study, it is important to systematically manage the functions of gardens by establishing design, construction, and monitoring DB techniques for the garden type and examine the hierarchy of various other gardens.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.