• 제목/요약/키워드: Smart Monitoring

검색결과 1,874건 처리시간 0.03초

A DEVELOPMENT OF INTELLIGENT CONSTRUCTION LIFT-CAR TOOLKIT DEVICE FOR CONSTRUCTION VERTICAL LOGISTICS MANAGEMENT

  • Chang-Yeon Cho;Soon-Wook Kwon;Tae-Hong Shin;Sang-Yoon Chin;Yea-Sang Kim;Joo-Hyung Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.242-249
    • /
    • 2009
  • High-rise construction sites, especially those situated in spatially constrained urban areas, have difficulties in timely delivery of materials. Modern techniques such as Just-in-time delivery, and use of information technology such as Project Management Information System (PMIS), are targeted to improve the efficiency of the logistics. Such IT-driven management techniques can be further benefited from state-of-the-art devices such as Radio Frequency Identification (RFID) tags and Ubiquitous Sensor Networks (USN), which has resulted in notable achievements in automated logistics management at the construction sites. Based on those achievements, this research develops USN hardware toolkits for construction lifts, which aims to be automated the vertical material delivery by sensing the material information and routing it automatically to the right place. The gathered information from the sensors can also be used for monitoring the overall status. The developed system will be tested in the actual high-rise construction sites to assess the system's feasibility. The proposed system is being implemented using Zigbee communication modules and RFID sensor networks which will communicate with the intelligent palette system (previously developed by the authors). To support the system, a lift-mountable intelligent toolkit is under development. Its feasibility test will be conducted by applying the implemented system to a test bed and then analyzing efficiency of the system and the toolkit. The collected test data will be provided as a basis of autonomous vertical transport equipment development. From this research, efficient management of the material lift is expected with increased accuracy, as well as better management of overall construction schedule benefited from the system. Further research will be expected to develop a smart construction lift, which will eliminate the need for human supervision, thus enabling a real 'autonomous' operation of the system.

  • PDF

경사면의 안정성 모니터링 데이터의 품질관리를 위한 2 단계 접근방안 (Two-Phase Approach for Data Quality Management for Slope Stability Monitoring)

  • 최준혁;김용진;조준휘;정우철;석송희;최송;김용성;지봉준
    • 한국지반신소재학회논문집
    • /
    • 제22권1호
    • /
    • pp.67-74
    • /
    • 2023
  • 경사면의 안정성을 모니터링 하기 위해 데이터 기반으로 사면의 붕괴를 예측, 경보를 하려는 연구가 증가하고 있다. 하지만 대부분의 논문에서는 데이터의 품질에 대해 간과하고 있다. 이는 오경보와 같은 문제를 발생시킬 수 있다. 이에 본 논문에서는 사면에서 수집된 데이터의 품질관리를 위한 규칙과 기계학습 모델로 구성된 2 단계의 접근 방안을 제안하였다. 규칙 기반은 높은 정확도와 직관적인 해석이 가능하다는 장점이 있으며 기계학습 모델은 명시적으로 표현할 수 없는 패턴을 도출할 수 있다는 장점이 있으며 2단계의 접근 방안은 이 두 장점을 모두 취할 수 있었다. 사례연구를 통해 두 방법을 단독으로 사용하였을 경우와 2단계의 접근 방안을 사용하였을 때의 성능을 비교하였고 2단계 접근 방안이 높은 성능을 보이는 것으로 판단되었다. 따라서 데이터의 품질관리를 위해 단독으로 두 방법을 사용하는 것보다 2단계 접근 방안 방법을 사용하는 것이 적절할것으로 판단된다.

Review of Domestic Sleep Industry Classification Criteria and Aanalysis of characteristics of related companies

  • Yu, Tae Gyu
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.111-116
    • /
    • 2022
  • After COVID-19, the number of people with sleep disorders around the world is increasing. In particular, in the flow of the 4th industrial revolution, the differentiation of types and characteristics of the sleep industry is accelerating. Therefore, in this study, the characteristics of each type of sleep-related industry were reclassified from an industrial point of view, and based on this, an attempt was made to review the classification system that can help companies develop sleep products and improve related national systems. Based on the 10th standard industry classification, we compared input cost, value, and usability and analyzed common characteristics, treatments, and preventive effects based on this. A comprehensive taxonomy using matrix analysis was reviewed. As a result, in terms of cost (A), the most common sleeping products are general mattresses and general bedding. It is an IOT device (auxiliary device), and the value aspect (B, B/D) included sleep cafe, bedding rental and management service, and sleep consulting. In terms of utility (A/B), a total of 6 product groups including sleep aids (health functional foods) belong to this category, and in terms of treatment (A/C), a total of 3 product groups including sleep clinics (medical services) belong to this category. As for the product group (A/D) with both properties, it was found that non-insurance sleep treatment medical devices, sleep-related over-the-counter drugs, and some sleep monitoring applications belong to this category. Ultimately, it was found that the sleep industry classification enables the most active product development and composition according to the relative relationship between cost and utility, and treatment and utility. appeared to be necessary.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

시각장애인을 위한 시각 도움 서비스를 제공하는 인공지능 시스템 개발 (Development of artificial intelligent system for visual assistance to the Visually Handicapped)

  • 오창현;최광요;이호영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.1290-1293
    • /
    • 2021
  • 현재 시각장애인들의 일상생활에 있어 많은 불편함을 겪고 있어 시각장애인에게 도움이 되고자 실시간 객체인식을 하여 보행환경의 정보를 전달하는 안경을 만드는 프로젝트를 진행하였다. 핵심 기능에 해당하는 객체인식은 인공지능 모델 YOLOv4가 사용되었으며, 시각장애인의 입장에서 걸어 다닐 때 인식 되어야 하는 객체들을 선정하고, 이들을 대상으로 학습 데이터를 재구성하고 YOLOv4의 재학습을 진행하였다. 학습 결과 모든 객체들에 대한 정확도는 68%를 보였으나 시각 장애인이 걸어다닐 때 인식되어야 하는 필수객체(Person, Bus, Car, Traffic_light, Bicycle, Motorcycle)들의 인식률은 84%로 측정되었다. 향 후 진행될 학습에선 더욱 다양한 방법으로 학습데이터를 확보하고, YOLOv4가 아닌 darkflow를 이용해 다양한 parameter로 학습을 진행하여 다면적인 성능비교가 필요하다.

IoT 센서를 이용한 공기 자동조절 스마트 에어카시트 제어 시스템 개발 (Development of Smart Air Car Seat Control System for Automatic Air Conditioning using IoT Sensor)

  • 김대훈;정수은;박수현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.208-210
    • /
    • 2021
  • 인터넷에 연결되는 사물의 수가 급격히 증가함에 따라 센서와 통신 기능을 포함해서 단순 모니터링 기능을 하거나, 서버로 전달하는 기능에서 벗어나 점점 인간에게 직접 가치를 제공하는 지능형 디바이스 개발 사업이 확장되고 있다. 따라서 디바이스가 주변 센싱 정보를 분석해서 주변 환경을 사용자들의 기호나 안전을 고려해서 변경하는 기술을 개발할 전망으로. 공기를 이용하여 다양한 효과를 가져올 수 있는 개발 제품에 생체신호 측정 시스템을 구축함으로써, 착좌 시 압력 분포의 변화 패턴을 통해 사용자의 상태를 파악할 수 있게 할 예정이다. 온도측정 센서와 사용자의 접촉을 통해 에어카시트 사용에 쾌적함을 높이고, 본 논문에서는 생체신호 측정 데이터에 의한 에어펌프 제어 시스템을 연계하여 구축하여 측정된 생체신호는 스마트폰 애플리케이션을 통해 보호자가 확인 및 조절을 할 수 있도록 하여 효과적으로 관리가 가능한 구축 시스템을 제안한다.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

임베디드 시스템 기반 오버헤드 빈 내부 상황 실시간 식별 시스템 개발 (Development of the Embedded System-based Real-time Internal Status Identification System for Overhead Bin)

  • 김재은;임혜정;조성욱
    • 항공우주시스템공학회지
    • /
    • 제17권2호
    • /
    • pp.111-119
    • /
    • 2023
  • 본 논문에서 제안하는 스토리지 박스의 내부 상황에 대한 실시간 식별 시스템은 오버헤드 빈의 내부 보관 상태, 무게 정보 및 무게 중심 계산 값을 시각화하는 시스템이다. 제안된 시스템은 로드 셀과 스위치 어레이를 사용하여 각 측정값을 동기화하고 시각적 센서를 통해 의미 있고 필요한 정보를 제공한다. 이 시스템은 C 언어 기반 임베디드 시스템으로 구축되며 1) 내부 가용공간 파악, 2) 무게중심 계산, 3) 실시간 시각 정보 제공이 주요 기능이다. 이러한 기능을 통해 스마트 오버헤드 빈을 개발하고, 향후 화물 적재 자동화 시스템 개발에 기여할 수 있는 실시간 화물 적재 모니터링 기술을 개발하였다.

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.