The army is concerned about the decrease in enlistment resources due to the low birth rate and the weakening of military combat power due to the shortening of the military service period. Now, the military's quantitative growth is no longer limited and it is a time for qualitative growth. To this end, the Army has been applying the Israeli learning method Havruta to recruit training to improve the quality of training since 2019. After applying Havruta, several scholars have studied the effect of recruit training applying Havruta. As a result, it was verified that recruit training applying Havruta improves the inner motive, creativity, and military service value of trainees. This study investigated how trainees' inner motive, creativity, and military service value affect their satisfaction and achievement. In addition, it was studied whether the effect of recruit training applied with Havruta on achievement differs according to the educational background (high school graduate or higher) and military family (professional soldiers within 4th degree) of the trainees. To this end, a survey was conducted on 472 recruits, and the structural relationship between each variable and the moderating effect were analyzed using the structural equation model. As a result of the study, military service value did not affect training satisfaction. Also, there was a difference in the effect of creativity on training satisfaction according to the educational background of new recruits, and there was a difference in the effect of military service value on training satisfaction and training achievement according to military family members. The purpose of this study is to contribute to the improvement of the army's recruit training development plan and effective training system.
Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.
장애학생을 위한 다양한 디지털 활용 교육 콘텐츠가 확산되고 있는 추세 속에서 스마트교육을 위한 교수지원체계와 장애 유형별 특성을 고려한 활용 방안이 마련되어야 한다. 이에 본 연구에서는 지체장애 특수학교 사례를 중심으로 디지털콘텐츠를 활용한 수업을 분석하여 교수학습 콘텐츠의 현장 적용방안과 지원체계의 개선방안을 제안하였다. 서울의 한 특수학교 수업 사례를 목적표집하여 수업동영상 자료, 수업성찰지, 교사대상 심층면담의 방법으로 분석을 실시하였다. 사례 분석 결과를 토대로 지체장애 학생의 특성을 반영하여 특수교육현장에서 디지털 콘텐츠가 효과적으로 활용하기 위한 방안을 제시하였다. 본 연구결과를 토대로 후속 연구를 제안하였다.
This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.
정보기술의 급격한 발달은 의료 환경에서도 많은 변화를 가져오고 있다. 특히 빅데이터와 인공지능(AI)을 활용한 의료영상 정보 시스템의 빠른 변화를 견인하고 있다. 전자의무기록(EMR)과 의료영상저장전송시스템(PACS)으로 구성된 처방전달시스템(OCS)은 의료 환경을 아날로그에서 디지털로 빠르게 바꾸어 놓았다. PACS는 여러 솔루션과 결합하여 호환, 보안, 효율성, 자동화 등 새로운 발전 방향을 보여주고 있다. 그 중, 영상의 질적 개선을 할 수 있는 빅데이터를 활용한 인공지능(AI)과의 결합이 활발히 진행되고 있다. 특히 딥러닝 기술을 활용하여 의료 영상 판독을 보조할 수 있는 시스템인 AI PACS가 대학과 산업체의 협력으로 개발되어 병원에서 활용되고 있다. 이처럼 의료 환경에서 의료영상 정보 시스템의 빠른 변화에 맞추어 의료시장의 구조적인 변화와 이에 대처할 수 있는 의료정책의 변화도 필요하다. 한편, 의료영상정보는 디지털 의료영상 전송 장치에서 생성되는 DICOM 방식을 기본으로 하고, 생성하는 방법의 차이에 따라 Volume 영상, 단면 영상인 2차원적 영상으로 구분된다. 또한, 최근 많은 의료기관에서는 스마트 병원 서비스를 내세우며 차세대 통합 의료정보시스템의 도입을 서두르고 있다. 차세대 통합 의료정보시스템은 EMR을 바탕으로 전자동의서, AI와 빅데이터를 활용한 정밀의료, 외부기관 등을 통합한 솔루션으로 구축하며, 이를 바탕으로 환자 정보 DB 구축과 데이터의 표준화를 통한 의료 빅데이터 기반의 의학 연구를 목적으로 한다. 우리나라의 의료영상 정보 시스템은 앞선 IT 기술력과 정부의 정책에 힘입어 세계적인 수준에 있으며, 특히 PACS 관련 프로그램은 의료 영상정보 기술에서 세계로 수출을 하고 있는 한 분야이다. 본 연구에서는 빅데이터를 활용한 의료영상 정보 시스템의 분석과 함께 의료영상 정보 시스템이 국내에 도입되게 된 역사적 배경을 바탕으로 현재의 흐름을 파악하고 나아가 미래의 발전 방향을 예측하였다. 향후, 20여 년 동안 축적된 DICOM 빅데이터를 기반으로 AI, 딥러닝 알고리즘을 활용하여 영상 판독률을 높일 수 있는 연구를 진행하고자 한다.
구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다
우리나라는 최근 세월호 사건 등 안전 불감증으로 인한 많은 사고로 인해 수많은 인명피해를 입었다. 따라서 안전교육이 어느 때 보다 중요한 시기이며 여기에는 '어떤 콘텐츠로 어떻게 교육할 것인가'가 중요한 주제이고 특히 안전교육의 특성상 이론 교육이 아닌 체험 교육이 효과적이다. 그러나 이런 안전교육 프로그램을 접하기란 쉬운 일이 아니며 안전교육의 일환인 응급 처치에 대한 교육은 공공기관을 통해 의무적으로 배우지 않으면 접할 기회가 많지 않아 아직까지도 우리나라의 안전 교육에 대한 프로그램 활성도는 미미한 수준이다. 본 논문은 이런 문제를 인식하고 의료 응급처치 교육을 위해 재미와 몰입을 가미한 효과적인 기능성게임을 제안한다. 이를 위해 응급처치 정보 애플리케이션 20가지 사례를 통해 의료 게임 5개를 분석하고 기능성게임의 지속 사용성을 높이는 5가지 요소를 도출하였다. 5개의 의료게임분석을 통해 1개의 게임을 선택하여 게임 방식을 차용하고, 5가지 요소를 level-up 구조, 반복학습, 보상결과, 경쟁 구조, 정보전달의 형태로 적용하였다. 제안된 의료 교육 기능성 게임은 1) 환자의 역할을 하는 캐릭터가 있어야 하며, 2) 상황을 보여주는 내러티브 흐름에서 3) 사용자가 상황을 판단하고 응급 처치를 하도록 유도해야한다. 또한 4) 보상과 레벨 그리고 단순하게 반복하는 기능이 디자인되어야 하며 5) 커뮤니티로 타인과 정보가 공유될 수 있어야 한다. 향후 본 연구의 결과로 구현된 콘텐츠는 우리나라 의료 응급처치 교육의 대중화에 기여할 것이라 사료된다.
하드웨어 자체적으로 가상화를 지원하는 기능들이 추가됨에 따라 다양한 작업 유형을 가진 사용자 어플리케이션들이 가상화 시스템에서 효율적으로 운용되고 있다. 가상화 지원 기능 중 SR-IOV는 PCI 장치에 대한 직접 접근을 통해 하이퍼바이저 또는 운영체제 개입을 최소화하여 시스템 성능을 높이는 기술로 베어-메탈 시스템 대비 비교적 긴 I/O 경로 및 사용자 영역과 커널 영역에 대한 빈번한 컨텍스트 스위칭 등 가상화 계층의 추가로 낮은 네트워크 성능을 가진 가상화 시스템에서 네트워크 I/O 가속화를 실현하게 해준다. 이러한 성능적 이점을 이용하기 위해 가상머신 또는 컨테이너와 같은 인스턴스에 SR-IOV를 접목할 시 최적의 네트워크 I/O 성능을 도출할 수 있는 네트워크 자원 관리 정책이 활발히 연구되고 있다. 본 논문은 I/O 가속화를 실현하는 SR-IOV의 네트워크 성능을 1) 네트워크 지연 시간, 2) 네트워크 처리량, 3) 네트워크 공정성, 4) 성능간섭, 5) 다중 네트워크와 같은 측면으로 세밀한 성능 평가 및 분석을 Virtio와 비교하여 진행한다. 본 논문의 기여점은 다음과 같다. 첫째, 가상화 시스템에서 Virtio와 SR-IOV의 네트워크 I/O 과정을 명확히 설명했으며, 둘째, Virtio와 SR-IOV의 네트워크 성능을 다양한 성능 메트릭을 기반으로 분석하였다. 셋째, 가상머신 밀집도가 높은 환경에서 SR-IOV 네트워크에 대한 시스템 오버헤드 및 이에 대한 최적화 가능성을 실험으로 확인하였다. 본 논문의 실험 결과 및 분석들은 스마트 팩토리, 커넥티드-카, 딥러닝 추론 모델, 크라우드 소싱과 같은 네트워크 집약적인 서비스들을 운용하는 가상화 시스템에 대한 네트워크 자원 관리 정책에 활용될 것으로 기대된다.
지난 70여 년간 영화와 텔레비전은 인류의 소통 방식에 획기적인 변화를 가져왔다. 하지만 이러한 발전에도 TV는 전파, 영화는 스크린이라는 매체의 제약으로 인해 다수를 대상으로 하는 소통 수단으로만 사용되어 왔다. 그러나 인터넷과 온라인 비디오의 발전은 이러한 제약을 없애고 지구 반대편에서 올린 유투브 영상을 1억 명의 사람이 시청하는 시대가 왔다. 지금 전달하고자 하는 메시지도 누구에게든 전달될 수 있지만 이러한 메시지를 담은 영상을 제작하는 것은 소통의 마지막 장애물로 남아있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 웹 어플리케이션과 AWS를 통한 동영상제작 프로그램을 구현하였다. 본 시스템은 기본적으로 웹 애플리케이션을 통해 관리자에게 쉬운 인터페이스를 통한 영상제작, 정보관리와 AWS를 통해 인터넷 상의 서버에 프로그램을 두고 컴퓨터나 스마트 폰 등에 할당받은 강의, 학습자료, 추천학습 가이드 등을 제공하여 교육 영상제작 서비스에 효율을 높이기 위해 구현하였다.
본 연구는 손목 재활을 위한 신경망을 이용하여 수부 동작 인식해주는 연구이다. 수부의 재활은 손상을 받은 수부의 기능을 최대로 회복시켜 일상생활과 직업, 취미생활을 가능하게 하는 것을 목표로 한다. 하지만 어느 장소를 찾아 치료를 하는 것은 경제적, 시간적으로 매우 비효율적이다. 이런 문제점을 해결하고자 본 연구에서는 환자가 직접 스마트 기기를 이용해 재활 치료를 하고자 한다. 이를 활용하면 비용이나 시간적인 면에서 매우 도움이 될 것이다. 본 연구에서는 총 10명의 사람으로부터 4 종류의 재활 운동에 대한 데이터를 수집하여 손목재활 데이터셋을 만들었다. 수부 제스쳐 인식은 신경망을 이용하여 모델을 구성하였다. 그 결과 93%의 정확도를 얻었으며, 본 시스템의 유용성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.