• Title/Summary/Keyword: Smart IoT

Search Result 1,354, Processing Time 0.031 seconds

Multiple Access Capability of Digital IoT Doorlock System for Smart Building (스마트빌딩용 디지털 IoT 도어락 시스템의 다중접속 능력)

  • Lee, Sun-Yui;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Yoon, Sung-Hoon;Cha, Jae-Sang;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2018
  • This paper proposes multiple access method for smart doorlock system using VLC(Visible Light Communication) with color grid modulation method. The proposed method is to connect multiple visible light signals using color grid modulation method in order to recognize and authenticate multiple users accessing doorlock. In order to enable visible light multiple access with existing infrastructure, the symbol energy interval of signal should be maximized. Thus, performance of system in VLC channel is measured by modulating symbols based on the proposed method. We confirm the actual channel test results of the modulated signal to implement doorlock system that recognizes the number of multiple access users.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System (지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구)

  • June-hwan Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.73-80
    • /
    • 2023
  • Recently, intelligent control systems are developing rapidly in various application fields, and methods for utilizing technologies such as deep learning, IoT, and cloud computing for intelligent control systems are being studied. An important technology in an intelligent control system is recognizing and tracking objects in images. However, existing multi-object tracking technology has problems in accuracy and speed. In this paper, a real-time intelligent control system was implemented using YOLO v5 and YOLO v6 based on a one-shot architecture that increases the accuracy of object tracking and enables fast and accurate tracking even when objects overlap each other or when there are many objects belonging to the same class. The experiment was evaluated by comparing YOLO v5 and YOLO v6. As a result of the experiment, the YOLO v6 model shows performance suitable for the intelligent control system.

Two-Way Hybrid Power-Line and Wireless Amplify-and-Forward Relay Communication Systems

  • Asiedu, Derek Kwaku Pobi;Ahiadormey, Roger Kwao;Shin, Suho;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Power-line communication (PLC) has influenced smart grid development. In addition, PLC has also been instrumental in current research on internet-of-things (IoT). Due to the implementation of PLC in smart grid and IoT environments, strides have been made in PLC and its combination with the wireless system to form a hybrid communication system. Also, PLC has evolved from a single-input-single-output (SISO) configuration to multiple-input-multiple-output (MIMO) configuration system, and from a point-to-point communication system to cooperative communication systems. In this work, we extend a MIMO wireless two-way amplify-and-forward (AF) cooperative communication system to a hybrid PLC and wireless (PLC/W) system configuration. We then maximize the weighted sum-rate for the hybrid PLC/W by optimizing the precoders at each node within the hybrid PLC/W system. The sum-rate problem was found to be non-convex, therefore, an iterative algorithm is used to find the optimal precoders that locally maximize the system sum-rate. For our simulation results, we compare our proposed hybrid PLC/W configuration to a PLC only and wireless only configuration at each node. Due to an improvement in system diversity, the hybrid PLC/W configuration outperformed the PLC only and wireless only system configurations in all simulation results presented in this paper.

A Study on the Establishment of Urban Life Safety Abnormalities Detection Service Using Multi-Type Complex Sensor Information (다종 복합센서 정보를 활용한 도심 생활안전 이상감지 서비스 구축방안 연구)

  • Woochul Choi;Bong-Joo Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.315-328
    • /
    • 2024
  • Purpose: The purpose of this paper is to present a service construction plan using multiple complex sensor information to detect abnormal situations in urban life safety that are difficult to identify on CCTV. Method: This study selected service scenarios based on actual testbed data and analyzed service importance for local government control center operators, which are main users. Result: Service scenarios were selected as detection of day and night dynamic object, Detection of sudden temperature changes, and Detection of time-series temperature changes. As a result of AHP analysis, walking and mobility collision risk situation services and fire foreshadowing detection services leading to immediate major disasters were highly evaluated. Conclusion: This study is significant in proposing a plan to build an anomaly detection service that can be used in local governments based on real data. This study is significant in proposing a plan to build an anomaly detection service that can be used by local governments based on testbed data.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

A Study on Drone Nozzle Design for Greenhouse Shading (온실차광을 위한 드론 전용노즐 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.249-254
    • /
    • 2023
  • Recently, the distribution of drones is being activated by saving farmers' working time and protecting them from harmful human bodies from pesticides due to the mission of spraying pesticides using drones. It is possible to compensate for various shortcomings derived from the existing pesticide spraying method, wide-area control and helicopter control. Recently, the smart farm expansion policy has actively used it to generate profits for farmers by increasing harvests by monitoring growth information of various crops based on IoT in real time and collecting big data on key variables, and related drone industry technologies are also being developed. In this study, drones were applied to the work of shading greenhouses to secure diversity in agricultural application fields, and basic research on the greenhouse environment was conducted to materialize the technology related to shading. In order to provide high-quality light in consideration of the internal and external environment of the green house, basic research was conducted to enable light-shielding missions using drones through nozzle design for uniform spraying of nozzles of drones, light-transmitting rate analysis of green houses, and light-shielding agent application experiments.

A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data (일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구)

  • Doowon Jang;Chunghyeok Kim;Gyuwon Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

Design for Smart Safety Management System: from Worker and Mobile Equipment Perspectives (시스템엔지니어링 기반의 스마트 안전관리 시스템설계: 작업자와 이동 장비를 중심으로)

  • Kim, Hyoung Min;Yoon, Sung Jae;Hong, Dae Guen;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2015
  • Industrial safety is one of the crucial agenda for Government as well as Manufacturing Industry. To cope with the needs, a great deal of policies and technical implementation have been proposed and implemented. With a great increasing attention on the Industry 4.0 and Smart Factory, industrial safety has received as a crucial agenda by the manufacturing industry in particular. Up until now, almost all of them have been made from the environmental aspects, rather than operator or workers. In this paper, we present our research results how to increase the workers' safety via smart factory technology, such as IoT and CPS. Our approach has been to see the problem from SE perspectives, to draw the real issues from the various stakeholders, and define how to solve the problem based on the emerging technologies. The developed systems can give conceptual framework for the 'smart' industrial safety system by providing solution architecture for how to monitor the location of workers, and moving equipments, and generate solutions how to avoid safety problems between them if detected.