• Title/Summary/Keyword: Smart IoT

Search Result 1,345, Processing Time 0.024 seconds

A Study on the Platform for Big Data Analysis of Manufacturing Process (제조 공정 빅데이터 분석을 위한 플랫폼 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.177-182
    • /
    • 2017
  • As major ICT technologies such as IoT, cloud computing, and Big Data are being applied to manufacturing, smart factories are beginning to be built. The key of smart factory implementation is the ability to acquire and analyze data of the factory. Therefore, the need for a big data analysis platform is increasing. The purpose of this study is to construct a platform for big data analysis of manufacturing process and propose integrated method for analysis. The proposed platform is a RHadoop-based structure that integrates analysis tool R and Hadoop to distribute a large amount of datasets. It can store and analyze big data collected in the unit process and factory in the automation system directly in HBase, and it has overcome the limitations of RDB - based analysis. Such a platform should be developed in consideration of the unit process suitability for smart factories, and it is expected to be a guide to building IoT platforms for SMEs that intend to introduce smart factories into the manufacturing process.

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

A study on the application of blockchain to the edge computing-based Internet of Things (에지 컴퓨팅 기반의 사물인터넷에 대한 블록체인 적용 방안 연구)

  • Choi, Jung-Yul
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.219-228
    • /
    • 2019
  • Thanks to the development of information technology and the vitalization of smart services, the Internet of Things (IoT) technology, in which various smart devices are connected to the network, has been continuously developed. In the legacy IoT architecture, data processing has been centralized based on cloud computing, but there are concerns about a single point of failure, end-to-end transmission delay, and security. To solve these problems, it is necessary to apply decentralized blockchain technology to the IoT. However, it is hard for the IoT devices with limited computing power to mine blocks, which consumes a great amount of computing resources. To overcome this difficulty, this paper proposes an IoT architecture based on the edge computing technology that can apply blockchain technology to IoT devices, which lack computing resources. This paper also presents an operaional procedure of blockchain in the edge computing-based IoT architecture.

A Fog-based IoT Service Interoperability System using Blockchain in Cloud Environment (클라우드 환경에서 블록체인을 이용한 포그 기반 IoT 서비스 상호운용 시스템)

  • Kim, Mi Sun;Park, Yong Suk;Seo, Jae Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.39-53
    • /
    • 2022
  • Cloud of Things (CoT) can provide IoT applications with unlimited storage functions and processing power supported by cloud services. However, in a centralized cloud of things, it can create a single point of failure that can lead to bottleneck problems, outages of the CoT network. In this paper, to solve the problem of centralized cloud of things and interoperate between different service domains, we propose an IoT service interoperability system using distributed fog computing and blockchain technology. Distributed fog is used to provide real-time data processing and services in fog systems located at a geographically close distance to IoT devices, and to enable service interoperability between each fog using smart contracts and distributed ledgers of the blockchain. The proposed system provides services within a region close to the distributed fog entrusted with the service from the cloud, and it is possible to access the services of other fogs without going through the cloud even between fogs. In addition, by sharing a service right token issuance information between the cloud and fog nodes using a blockchain network, the integrity of the token can be guaranteed and reliable service interoperability between fog nodes can be performed.

A Study on Smart Factory Construction Method for Efficient Production Management in Sewing Industry

  • Kim, Jung-Cheol;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • In the era of the fourth industrial revolution, many production plants are gradually evolving into smart factories that apply information and communication technology to manufacturing, distribution, production, and quality management. The conversion from conventional factories to smart factories has resulted in the automation of production sites using the internet and the internet of things (IoT) technology. Thus, labor-intensive production can easily collect necessary information. However, implementing a smart factory required a significant amount of time, effort, and money. In particular, labor-intensive production industries are not automated, and productivity is determined by human skill. A representative industry of such industries is sewing the industry. In the sewing industry, wherein productivity is determined by the operator's skills. This study suggests that production performance, inventory management and product delivery of the sewing industries can be managed efficiently with existing production method by using smart buttons incorporating IoT functions, without using automated machinery.

An analysis on invasion threat and a study on countermeasures for Smart Car (스마트카 정보보안 침해위협 분석 및 대응방안 연구)

  • Lee, Myong-Yeal;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.374-380
    • /
    • 2017
  • The Internet of Things (IoT) refers to intelligent technologies and services that connect all things to the internet so they can interactively communicate with people, other things, and other systems. The development of the IoT environment accompanies advances in network protocols applicable to more lightweight and intelligent sensors, and lightweight and diverse environments. The development of those elemental technologies is promoting the rapid progress in smart car environments that provide safety features and user convenience. These developments in smart car services will bring a positive effect, but can also lead to a catastrophe for a person's life if security issues with the services are not resolved. Although smart cars have various features with different types of communications functions to control the vehicles under the existing platforms, insecure features and functions may bring various security threats, such as bypassing authentication, malfunctions through illegitimate control of the vehicle via data forgery, and leaking of private information. In this paper, we look at types of smart car services in the IoT, deriving the security threats from smart car services based on various scenarios, suggesting countermeasures against them, and we finally propose a safe smart car application plan.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

Implementation of Zigbee-based Publish/Subscribe System for M2M/IoT Services (M2M/IoT 서비스를 위한 지그비 기반의 Publish/Subscr ibe 시스템 구현)

  • Lee, Dokyeong;Choi, Deokjai
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1461-1472
    • /
    • 2014
  • Recently, smart devices has been spreaded and the definition of RFID/USN(Radio Frequency Identification/Ubiquitous Sensor Network) technology has also extended. So, originally, human is an agent of communications but now, 'the things' are also an agent of communication. That is, Internet of Things(IoT). IoT is very big IT infra technology that is based on wire-wireless network technologies such as Bluetooth and Wi-Fi. However, in reality, IoT service that can provide various meaning and integrate smoothly is not appear yet. To solve these problems of IoT, we implemented Publish/Subscribe system, which operate in Zigbee based wireless sensor network by using MQTT-SN protocol. Moreover, this system can operate with combining MQTT system that is already existed in external Internet network so, extensibility and flexibility aspect is excellent. We show that possibility of IoT services that is combined between different heterogeneous network through the MQTT-SN.

A Study on the Development for Environment Monitoring System of Micro Data Center (마이크로 데이터센터의 환경 모니터링 시스템 개발 연구)

  • Lee, Kap Rai;Kim, Young Sik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.355-360
    • /
    • 2022
  • In this paper, we present design and developing method for EMS(environment monitoring system) of micro data center. This developing EMS monitors operating environment of micro data center and analyze sensing data through IoT(Internet of things) sensors in real time. Firstly we present configuration method of IoT sensing package and design method EMS hardware platform. Secondly we design data collector software for data collection of IoT sensor with different protocol and develop monitoring software of EMS. The data collector software consists of sensor collector module and collector manager module. Also we design EMS software which has micro service architecture structural style and component based business logic.

Concurrency Conflicts Resolution for IoT Using Blockchain Technology

  • Morgan, Amr;Tammam, Ashraf;Wahdan, Abdel-Moneim
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.331-340
    • /
    • 2021
  • The Internet of Things (IoT) is a rapidly growing physical network that depends on objects, vehicles, sensors, and smart devices. IoT has recently become an important research topic as it autonomously acquires, integrates, communicates, and shares data directly across each other. The centralized architecture of IoT makes it complex to concurrently access control them and presents a new set of technological limitations when trying to manage them globally. This paper proposes a new decentralized access control architecture to manage IoT devices using blockchain, that proposes a solution to concurrency management problems and enhances resource locking to reduce the transaction conflict and avoids deadlock problems. In addition, the proposed algorithm improves performance using a fully distributed access control system for IoT based on blockchain technology. Finally, a performance comparison is provided between the proposed solution and the existing access management solutions in IoT. Deadlock detection is evaluated with the latency of requesting in order to examine various configurations of our solution for increasing scalability. The main goal of the proposed solution is concurrency problem avoidance in decentralized access control management for IoT devices.