International journal of advanced smart convergence
/
제12권2호
/
pp.108-116
/
2023
Smart home and artificial intelligence technologies are developing rapidly, and various smart home systems associated with artificial intelligence (AI) improved the quality of living for people. In the present research, we examine the role of individuals' motivational system in their responses to the application of AI in smart homes. In particular, this research focuses on individuals' prevention motivational system and investigates whether individuals' attitudes toward the application of AI in smart homes differ according to their level of prevention motivation. Specifically, it is hypothesized that individuals with strong (vs. weak) prevention motivation will have more favorable attitudes toward the application of AI in smart homes. Consistent with the hypothesis, the results reveal that the respondents in the strong (vs. weak) prevention motivation reported significantly more favorable attitudes toward the six types of AI-based application in smart homes (e.g., AIbased AR/VR games, AI pet care system, AI robots, etc.). Our findings suggest that individuals' prevention motivational system may be an effective market segmentation tool in facilitating their positive responses to the application of AI in smart homes.
Although smart homes have been much developed in China, smart homes has been mainly towards the adoption of new technologies. There is little development of smart homes to consider and meet residents' needs in China. This study investigated residents' living in apartments in China using a questionnaire to identify their demands on smart homes. Through the survey, this study analyzed residents' space use patterns, daily living patterns etc. according to their ages. The results implied that there are significant differences in the use of spaces and demands on daily living within apartments. The results of this study should be considered for the development of smart homes in future. For example, it might be easier for people in the 20's to adopt Internet of Things (IoT) and environmental control systems compared to other age groups because most of them in the 20's use smart phones effectively without difficulties. In case of people in their 50's who stay home more times for taking a rest and eating meals compared to other age groups, smart technologies should be applied to support their health care and works in housings. This research emphasizing residents' experiences could be basis for the development of smart homes in China.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2853-2873
/
2013
Over the last few years, one of the most common purposes of smart homes is to provide human centric services in the domain of u-healthcare by analyzing inhabitants' daily living. Currently, the major challenges in activity recognition include the reliability of prediction of each classifier as they differ according to smart homes characteristics. Smart homes indicate variation in terms of performed activities, deployed sensors, environment settings, and inhabitants' characteristics. It is not possible that one classifier always performs better than all the other classifiers for every possible situation. This observation has motivated towards combining multiple classifiers to take advantage of their complementary performance for high accuracy. Therefore, in this paper, a method for activity recognition is proposed by optimizing the output of multiple classifiers with Genetic Algorithm (GA). Our proposed method combines the measurement level output of different classifiers for each activity class to make up the ensemble. For the evaluation of the proposed method, experiments are performed on three real datasets from CASAS smart home. The results show that our method systematically outperforms single classifier and traditional multiclass models. The significant improvement is achieved from 0.82 to 0.90 in the F-measures of recognized activities as compare to existing methods.
International journal of advanced smart convergence
/
제13권3호
/
pp.89-100
/
2024
Integrating advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and big data is transforming elderly care services, particularly in nursing homes. This study explores the impact of these technologies on the quality of care in nursing homes in Tongling City, China. Using a mixed-methods approach, data were collected from 298 elderly residents across 12 nursing homes through detailed surveys and interviews. The findings indicate that smart platforms and intelligent terminals significantly enhance service quality, with institutional conditions and social participation emerging as the most influential factors. Although the study's regional focus may limit the generalizability of the findings, it introduces novel applications of AI in dietary management and IoT in personalized environmental monitoring, which contribute original insights to the broader field of smart elderly care. These results underscore the transformative potential of advanced technologies in improving elderly care and offer a model that can be adapted to similar contexts globally. Future research should focus on longitudinal studies to assess the long-term impact of these technologies and explore their applicability in diverse cultural and regional settings.
China has already entered the aging society and is predicted to become a super-aged society in 2020. The recent studies identified that the elderly has more interest in 'Aging-in-Place' which emphasizes deinstitutionalization since welfare facilities such as care homes and silver towns have separated the elderly from their local communities where they used to live in. The aim of this research is to propose a promising way for smart housing services who support the elderly's living in their homes, China. This research is to investigate the elderly's life and to identify their demands on housings for implementing such smart services. The elderly's living in apartments in Luoyang city, China, were investigated through interviews using a questionnaire survey. The results show that smart housing services should be provided to support the elderly's health, safety, leisure activities, comfortable living, and social relationships sustainably. In addition, such smart housing services should be intuitive since the elderly need to use easily smart services for their autonomous life in their homes. The smart housing services should be developed in the direction of enhancing the elderly's healthy and desirable life, and lessening their discomforts due to aging.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1796-1816
/
2020
The health and safety of elderly and disabled patients who cannot live alone is an important issue. Timely detection of sudden events is necessary to protect these people, and anomaly detection in smart homes is an efficient approach to extracting such information. In the real world, there is a causal relationship between an occupant's behaviour and the order in which appliances are used in the home. Bayesian networks are appropriate tools for assessing the probability of an effect due to the occurrence of its causes, and vice versa. This paper defines different subsets of random variables on the basis of sensory data from a smart home, and it presents an anomaly detection system based on various models of Bayesian networks and drawing upon these variables. We examine different models to obtain the best network, one that has higher assessment scores and a smaller size. Experimental evaluations of real datasets show the effectiveness of the proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.321-344
/
2017
Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.
Lama AlNabulsi;Sireen AlGhamdi;Ghala AlMuhawis;Ghada AlSaif;Fouz AlKhaldi;Maryam AlDossary;Hussian AlAttas;Abdullah AlMuhaideb
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.95-102
/
2023
The emergence of Internet of Things (IoT) into our daily lives has grown rapidly. It's been integrated to our homes, cars, and cities, increasing the intelligence of devices involved in communications. Enormous amount of data is exchanged over smart devices through the internet, which raises security concerns in regards of privacy evasion. This paper is focused on the forensics and intrusion detection on one of the most common protocols in IoT environments, especially smart home environments, which is the Message Queuing Telemetry Transport (MQTT) protocol. The paper covers general IoT infrastructure, MQTT protocol and attacks conducted on it, and multiple network forensics frameworks in smart homes. Furthermore, a machine learning model is developed and tested to detect several types of attacks in an IoT network. A forensics tool (MQTTracker) is proposed to contribute to the investigation of MQTT protocol in order to provide a safer technological future in the warmth of people's homes. The MQTT-IOT-IDS2020 dataset is used to train the machine learning model. In addition, different attack detection algorithms are compared to ensure the suitable algorithm is chosen to perform accurate classification of attacks within MQTT traffic.
Intelligent homes consist of ubiquitous sensors, home networks, and a context-aware computing system. These homes are expected to offer many services such as intelligent air-conditioning, lighting control, health monitoring, and home security. In order to realize these services, many researchers have worked on various research topics including smart sensors with low power consumption, home network protocols, resident and location detection, context-awareness, and scenario and service control. This paper presents the real-time metabolic rate estimation method that is based on measured heart rate for human adaptive appliance (air-conditioner, lighting etc.). This estimation results can provide valuable information to control smart appliances so that they can adjust themselves according to the status of residents. The heart rate based method has been experimentally compared with the location-based method on a test bed.
스마트주택은 IT 기술에 대한 관심의 증가와 함께 가장 중요한 미래 주택의 대안으로 주목받고 있으며, 본 연구는 스마트주택 기술이 어떻게 거주자의 변화하는 니즈를 반영하고 있는지 기술개발 현황을 분석하고자 하였다. 연구방법으로는 첫째, 미래의 라이프스타일니즈를 파악하기 위한 내용분석을 실시하였고. 둘째, 전 세계의 대표적 미래 스마트 주택 사례를 선정하여 스마트 기술요소를 분석하였다. 그 결과, 자동화관련 기능이 가장 높은 35%의 비중을 차지하였고, 건강관련 기능이 19%, 그 뒤를 이어 여가 및 에너지 관련 기능이 15%였으며, 정보지원기능이 11%, 관계지원 기능은 6%에 머물렀다. 스마트 주택은 높은 기술비용을 고려할 때 거주자들의 실질적 니즈를 반영해야 하며, 본 연구는 스마트주택의 현황을 기술적 관점이 아닌 거주자의 니즈를 중심으로 분석하였다는 데 그 의의가 있다. 향후 거주자의 세분화된 니즈에 따라 특화된 의료주택, 에너지절감주택 등 다양한 형태의 스마트 주택개발 연구가 이어져야 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.