• Title/Summary/Keyword: Smart Farm System

Search Result 233, Processing Time 0.024 seconds

Building a Smart Farm in the House using Artificial Intelligence and IoT Technology (인공지능과 IoT 기술을 활용한 댁내 스마트팜 구축)

  • Moon, Ji-Ye;Gwon, Ga-Eun;Kim, Ha-Young;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.818-821
    • /
    • 2020
  • The artificial intelligence software market is developing in various fields world widely. In particular, there is a wide variety of applications for image recognition technology using deep learning. This study intends to apply image recognition technology to the 'Home Gardening' market growing rapidly due to COVID-19, and aims to build a small-scale smart farm in the house using artificial intelligence and IoT technology for convenient crop cultivation for busy people living in cities. This intelligent farm system includes an automatic image recognition function and recommendation function based on temperature and humidity sensor-based indoor environment analysis.

A Study to Apply A Fog Computing Platform (포그 컴퓨팅 플랫폼 적용성 연구)

  • Lee, Kyeong-Min;Lee, Hoo-Myeong;Jo, Min-Sung;Choi, Hoon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.60-71
    • /
    • 2019
  • As IoT systems such as smart farms and smart cities become popular, a large amount of data collected from many sensor nodes is sent to a server in the Internet, which causes network traffic explosion, delay in delivery, and increase of server's workload. To solve these problems, the concept of fog computing has been proposed to store data between IoT systems and servers. In this study, we implemented a software platform of the fog node and applied it to the prototype smart farm system in order to check whether the problems listed above can be solved when using the fog node. When the fog node is used, the time taken to control an IoT device is lower than the response time of the existing IoT device-server case. We confirmed that it can also solve the problem of the Internet traffic explosion and the workload increase in the server. We also showed that the intelligent control of IoT system is feasible by having the data visualization in the server and real time remote control, emergency notification in the fog node as well as data storage which is the basic capability of the fog node.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Design and Implementation of Fruit harvest time Predicting System based on Machine Learning (머신러닝 적용 과일 수확시기 예측시스템 설계 및 구현)

  • Oh, Jung Won;Kim, Hangkon;Kim, Il-Tae
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.74-81
    • /
    • 2019
  • Recently, machine learning technology has had a significant impact on society, particularly in the medical, manufacturing, marketing, finance, broadcasting, and agricultural aspects of human lives. In this paper, we study how to apply machine learning techniques to foods, which have the greatest influence on the human survival. In the field of Smart Farm, which integrates the Internet of Things (IoT) technology into agriculture, we focus on optimizing the crop growth environment by monitoring the growth environment in real time. KT Smart Farm Solution 2.0 has adopted machine learning to optimize temperature and humidity in the greenhouse. Most existing smart farm businesses mainly focus on controlling the growth environment and improving productivity. On the other hand, in this study, we are studying how to apply machine learning with respect to harvest time so that we will be able to harvest fruits of the highest quality and ship them at an excellent cost. In order to apply machine learning techniques to the field of smart farms, it is important to acquire abundant voluminous data. Therefore, to apply accurate machine learning technology, it is necessary to continuously collect large data. Therefore, the color, value, internal temperature, and moisture of greenhouse-grown fruits are collected and secured in real time using color, weight, and temperature/humidity sensors. The proposed FPSML provides an architecture that can be used repeatedly for a similar fruit crop. It allows for a more accurate harvest time as massive data is accumulated continuously.

Livestock Disease Forecasting and Smart Livestock Farm Integrated Control System based on Cloud Computing (클라우드 컴퓨팅기반 가축 질병 예찰 및 스마트 축사 통합 관제 시스템)

  • Jung, Ji-sung;Lee, Meong-hun;Park, Jong-kweon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.88-94
    • /
    • 2019
  • Livestock disease is a very important issue in the livestock industry because if livestock disease is not responded quickly enough, its damage can be devastating. To solve the issues involving the occurrence of livestock disease, it is necessary to diagnose in advance the status of livestock disease and develop systematic and scientific livestock feeding technologies. However, there is a lack of domestic studies on such technologies in Korea. This paper, therefore, proposes Livestock Disease Forecasting and Livestock Farm Integrated Control System using Cloud Computing to quickly manage livestock disease. The proposed system collects a variety of livestock data from wireless sensor networks and application. Moreover, it saves and manages the data with the use of the column-oriented database Hadoop HBase, a column-oriented database management system. This provides livestock disease forecasting and livestock farm integrated controlling service through MapReduce Model-based parallel data processing. Lastly, it also provides REST-based web service so that users can receive the service on various platforms, such as PCs or mobile devices.

A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms (스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계)

  • Jeong, Yina;Lee, Byungkwan;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes the AMCS(Agricultural Machine Control System that distinguishes farms using satellite photos or drone photos of farms and controls the self-driving and operation of farm drones and tractors. The AMCS consists of the LSM(Local Server Module) which separates farm boundaries from sensor data and video image of drones and tractors, reads remote control commands from the main server, and then delivers remote control commands within the management area through the link with drones and tractor sprinklers and the PSM that sets a path for drones and tractors to move from the farm to the farm and to handle work at low cost and high efficiency inside the farm. As a result of AMCS performance analysis proposed in this paper, the PSM showed a performance improvement of about 100% over Dijkstra algorithm when setting the path from external starting point to the farm and a higher working efficiency about 13% than the existing path when setting the path inside the farm. Therefore, the PSM can control tractors and drones more efficiently than conventional methods.

An Analysis on the Educational Needs for the Smart Farm: Focusing on SMEs in Jeon-nam Area (중소·중견기업의 스마트팜 교육 수요 분석: 전남지역을 중심으로)

  • Hwang, Doo-hee;Park, Geum-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.649-655
    • /
    • 2020
  • This study determined effective educational strategies by investigating and analyzing the related educational demands for SMEs (small and medium-sized enterprises) in the 4th Industrial Revolution based area of smart farms. In order to derive the approprate educational strategies, Importance-Performance Analysis (IPA) and Borich's Needs Assessment Model were conducted based on the smart farm technological field. As a result, the education demand survey showed high demand for production systems and intelligent farm machinery. In detail, Borich's analysis showed the need for pest prevention and diagnosis technology (8.03), network and analysis SW linkage technology (7.83), and intelligent farm worker-agricultural power system-electric energy hybrid technology (7.43). In contrast, smart plant factories (4.09), lighting technology for growth control (4.46) and structure construction technology (4.62) showed low demands. Based on this, the IPA portfolio shows that the network and analysis SW linkage technology and the CAN-based complex center are urgently needed. However, the technology that has already been developed, such as smart factory platform development, growth control lighting technology and structure construction technology, was oversized. Based on these results, it is possible to strategically suggest the customized training programs for industrial sectors of SMEs that reflect the needs for efficiently operating smart farms. This study also provides effective ways to operate the relevant training programs.

Development of Smart Farm System for Minimizing Carbon Emissions (탄소배출 최소화를 위한 스마트팜 시스템의 개발)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1231-1236
    • /
    • 2016
  • Paris Agreement signed in January 2015 is a new rule that will replace the existing Kyoto Protocol. The new agreement needs new demands and challenges to minimize carbon emissions. Especially, even though agricultural sector occupies only 1.8% in the national energy consumption, the portion of the energy being occupied in agricultural production costs very high. Although renewable energy and energy-saving facilities is being developed and disseminated for replacing fossil fuel energy and saving energy, the installation-rate is not enough high. Thus, this paper developed Korean-style smart farm system, and carried out the experiment to show the performance of energy savings through analyzing proper environment in domestic situation.

A Swine Management System for PLC baed on Integrated Image Processing Technique (통합 이미지 처리기법 기반의 PLF를 위한 Swine 관리 시스템)

  • Arellano, Guy;Cabacas, Regin;Balontong, Amem;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • The demand for food rises proportionally as population grows. To be able to achieve sustainable supply of livestock products, efficient farm management is a necessity. With the advancement in technology it also brought innovations that could be harness in order to achieve better productivity in animal production and agriculture. Precision Livestock Farming (PLF) is a budding concept of making use of smart sensors or available devices to automatically and continuously monitor and manage livestock production. With this concept, this paper introduces a swine management system that integrates image processing technique for weight monitoring. This system captures pig images using camera, evaluate and estimate the weight base on the captured image. It is comprised of Pig Module, Breeding Module, Health and Medication Module, Weighr Module, Data Analysis Module and Report Module to help swine farm administrators better understand the performance and situation of the swine farm. This paper aims to improve the management in both small and big livestock raisers.

Design and Implementation of Bird Repellent System (조류 퇴치 시스템의 설계 및 구현)

  • Hong, Hyunggil;Cho, Yongjun;Woo, Senongyong;Song, Suhwan;Oh, Jangseok;Yun, Haeyong;Kim, Dae Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.104-109
    • /
    • 2019
  • Damage caused by wild animals such as pheasants and magpies is a problem in rural areas. A bird repellent system based on sensing and repelling farm pest animals and birds is proposed herein. This system is equipped with a bird model part on a supporting platform and comprises a sound source generator, a system control user interface, and a sensor in the center. The sensor is composed of an illuminance sensor and a PIR sensor. The illuminance sensor distinguishes between day and night, whereas the PIR sensor detects birds or wild animals and outputs them from the sound generator. The entire system can be managed easily by the user interface and system control.