• Title/Summary/Keyword: Smart Factory Quality Cases

Search Result 3, Processing Time 0.016 seconds

Quality Strategy for Building a Smart Factory in the Fourth Industrial Revolution (4차 산업혁명시대의 스마트 팩토리 구축을 위한 품질전략)

  • Chong, Hye Ran;Bae, Kyoung Han;Lee, Min Koo;Kwon, Hyuck Moo;Hong, Sung Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.87-105
    • /
    • 2020
  • Purpose: This paper aims to propose a practical strategy for smart factories and a step-by-step quality strategy according to the maturity of smart factory construction. Methods: The characteristics, compositional requirements, and diagnosis system are examined for smart factories through theoretical considerations. Several cases of implementing smart factory are studied considering the company maturity level from the aspect of the smartness concept. And specific quality techniques and innovation activities are carefully reviewed. Results: The maturity level of smart factory was classified into five phases: 1) ICT non-application, 2) basic, 3) intermediate 1, 4) intermediate 2, 5) advanced level. A five-step quality strategy was established on the basis of case studies; identify, measure, analyze, optimize, and customize. Some quality techniques are introduced for step-by-step implementation of quality strategies. Conclusion: To build a successful smart factory, it is necessary to establish a quality strategy that suits the culture and size of the company. The quality management strategy proposed in this paper is expected to contribute to the establishment of appropriate strategies for the size and purpose of the company.

Review on the Application of Industry 4.0 Digital Twin Technology to the Quality Management (4차 산업혁명 디지털 트윈 기술의 품질경영 적용 연구)

  • Quan, Ying;Park, Sangchan
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.601-610
    • /
    • 2017
  • Purpose: Authors observe the digital twin enabled smart factory and/or digital manufacturing processes where Industry 4.0 technologies and quality management principles intersect. In this regard, this study reviews existing research regarding digital twins from the perspective of quality management. Methods: Initially, attention was given to how digital twins are manifested in the Industry 4.0 environment. Then, authors identify quality management elements amongst digital twin models, to align the concept of quality with the functional purpose of digital twins. After introducing specific examples of quality management tools applied to digital twins, the authors extend the domain of quality management into the analysis of multimedia format quality data obtained through machine vision. Results: Inspired by cases on the quality management application to digital twins, the authors suggest a framework for Industry 4.0 quality management. The envisioned suggested framework encompasses 4 dimensions, namely, 4M&1E, an application time window, new methodologies, and enabling technologies. Conclusion: Finally, the authors unfold the emerging trend of digital twin enabled smart factories, while emphasizing the necessity of quality management in conjunction with the introduction of digital twins.

A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site (방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구)

  • Jeong-Hyun Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.