• Title/Summary/Keyword: Smart Factory Platform

Search Result 62, Processing Time 0.022 seconds

Research about the IoT based on Korean style Smart Factory Decision Support System Platform - based on Daegu/Kyeongsangbuk-do region component manufacture companies (IoT 기반의 한국형 Smart Factory 의사결정시스템 플랫폼에 대한 연구 - 대구/경북 부품소재 기업을 중심으로)

  • Sagong, Woon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The current economic crisis is making new demands on manufacturing industry, in particular, in terms of the flexibility and efficiency of production processes. This requires production and administrative processes to be meshed with each other by means of IT systems to optimise the use and capacity utilisation of machines and lines but also to be able to respond rapidly to wrong developments in production and thus to minimise adverse impacts on the business. The future scenario of the "smart factory" represents the zenith of this development. The factory can be modified and expanded at will, combines all components from different manufacturers and enables them to take on context-related tasks autonomously. Integrated user interfaces will still be required at most for basic functionalities. The complex control operations will run wirelessly and ad hoc via mobile terminals such as PDAs or smartphones. The comnination of IoT, and Big Data optimisation is bringing about huge opportunities. these processes are not just limited to manufacturing, anywhere a supply chain environment exists can benefit from information provided by linked devices and access to big data to inform their decision support. Building a smart factory with smart assets at its core means reaching those desired new levels of productivity and efficiency. It means smart products that leverage advanced traceability, connectivity and intelligence. For businesses, it means being able to address the talent crunch through more autonomous. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making.

A Study on the Green Smart School Integrated Platform (그린 스마트 스쿨 통합 플랫폼에 관한 연구)

  • Lee, Chaegyu;Oh, Seokju;Jeong, Jongpil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.286-287
    • /
    • 2022
  • 정부의 한국판 그린뉴딜 정책 발표와 함께 주요 과제 중 하나인 그린 스마트 스쿨의 관심도가 점점 커지고 있다. 이에 따라 성공적인 그린 스마트 스쿨 구축을 위한 솔루션이 필요해지고 있다. 본 논문은 체계화 되지 않은 그린 스마트 스쿨의 전체 시스템 관점에서 문제를 해결하기 위한 Cloud-Edge와 AI를 적용한 그린 스마트 스쿨 통합 플랫폼을 제안한다.

Development of Worker-Driven Smart Factory Service (근로자 주도 스마트팩토리 서비스 구성 방법)

  • Lee, Jin-Heung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.73-76
    • /
    • 2020
  • 본 논문은 생산 현장에서 필요로 하는 다양한 스마트팩토리 서비스를 현장 근로자가 직접 기획, 설계, 구현 및 적용 가능한 서비스 플랫폼을 제안한다. 이를 위하여 오픈 하드웨어 개발 도구 등을 활용한 IoT 기반 제조데이터 수집과 이를 활용하여 서비스 화면을 구성할 수 있는 개발도구를 설계하고 구현하였으며, 구현된 프로그램으로부터 제조데이터 기반의 다양한 현장 서비스를 근로자가 직접 만들고 배포할 수 있다.

  • PDF

A Study on the Structural Relationship among Technological Determinants, Manufacturing Operations, and Performances for Implementing a Smart Factory in Small Businesses (중소 제조기업의 스마트공장 기술결정요인, 제조운영 및 성과 간 구조적 관계에 관한 연구)

  • Kwon, Se-In;Yang, Jong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.650-661
    • /
    • 2020
  • The digital transformation of the 4th industrial revolution is leading to changes and innovations in the global economy. Various countries are focusing on reviving their manufacturing industries and economic recovery through smart factories. The purpose of this study is to empirically identify technological determinants for the successful implementation of the smart factory and to verify teose effects on manufacturing operations and the firms' operational/environmental performances. Five factors, including sensor network, platform technology, information system, intelligent automation, and safety, were defined as core technologies. The SEM analysis results of 157 small and medium-sized manufacturing firms that have implemented smart factories are as follows. First, sensor network, platform technology, and information system had significant effects on smart manufacturing operations. Second, smart manufacturing operations have improved firm performance. This study is valuable in that it has confirmed the effectiveness of government-funded projects and systemized key technologies for implementing smart factories. Meanwhile, it is helpful for practitioners to support an efficient and effective decision-making for the new adoption.

Study of N-Port Electric Vehicle Charging Systems Using OPC-UA (OPC UA를 이용한 N-Port EV 충전 시스템 연구)

  • Lee, Seong Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.343-352
    • /
    • 2017
  • IEC62541, known as OPC-UA, is a standard communication protocol for Smart Grid (SG) and Smart Factory application platform. It was accepted as an IEC standard (IEC62541) in 2011 by IEC TC57, and is extending range of application as collaborating with other standrads. The government's policies to popularize EVs ("Workplace Charging Challenge"), the number of Electric vehicle which try to be charging in the factory is expected to increase. In this situation, indiscreet and uncontrolled EV charging can lead to some problems, such as excess of the peak demand capacity. Therefore, EVs, which is charging in SFs, must be monitoring and controlling to avoid and reduce peak demand. However, the standards for EVs charging differ from the standards for SFs. In other words, to increase the ease of use for drivers, and reduce risk for enterprise, we have needs of study to develop the protocols or to provide interoperability, for EVs charging in SFs. This paper deals with a EV charging management platform installing in a smart factory. And this platform can be easily integrated as part of SF management software. The main goal of this paper is to implement EV management system based on IEC61851 and IEC62541.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

A Study on XR Technology for Digital Twin of Smart Factory (스마트 공장의 디지털 트윈을 위한 XR기술에 관한 연구)

  • Soek-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.1-9
    • /
    • 2024
  • The introduction of smart factory digital twins is a concept that has already been proposed to increase productivity in the manufacturing industry through CPS(Cyber Physics System), and has been applied to specific industrial process stages or partially introduced in stages where simulation is required. However, with the recent development of the 4th Industrial Revolution technology, it is receiving attention again along with XR (Extended Reality) technology. However, because there are not many effective cases, this study analyzed the devices, equipment, and technology of the manufacturing process to build a digital twin applying digital threads and synchronized signals and information to control, remote control, and produce intelligent process automation equipment. A platform capable of analyzing information was proposed and developed. Through this, we designed and built an XR content service platform that can support artificial intelligence and developed it to enable control, remote control, and analysis of production information. A possible platform was proposed and developed. We hope that this study will be helpful in conducting research on many cases, and in the future, expanded research on increasing productivity in each part of the process and production is needed through intelligent models.

A Study on CPPS Architecture integrated with Centralized OPC UA Server (중앙 집중식 OPC UA 서버와 통합 된 CPPS 아키텍처에 관한 연구)

  • Jo, Guejong;Jang, Su-Hwan;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2019
  • In order to build a smart factory, building a CPPS (Cyber Physical Product System) is an important system that must be accompanied. Through the CPPS, it is the reality of smart factories to move physical factories to a digital-based cyber world and to intelligently and autonomously monitor and control them. But The existing CPPS architectures present only an abstract modeling architecture, and the research that applied the OPC UA Framework (Open Platform Communication Unified Architecture), an international standard for data exchange in the smart factory, as the basic system of CPPS It was insufficient. Therefore, it is possible to implement CPPS that can include both cloud and IoT by collecting field data distributed by CPPS architecture applicable to actual factories and concentrating data processing in a centralized In this study, we implemented CPPS architecture through central OPC UA Server based on OPC UA conforming to central processing OPC UA Framework, and how CPPS logical process and data processing process are automatically generated through OPC UA modeling processing We have proposed the CPPS architecture including the model factory and implemented the model factory to study its performance and usability.

Investigating Key Security Factors in Smart Factory: Focusing on Priority Analysis Using AHP Method (스마트팩토리의 주요 보안요인 연구: AHP를 활용한 우선순위 분석을 중심으로)

  • Jin Hoh;Ae Ri Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.185-203
    • /
    • 2020
  • With the advent of 4th industrial revolution, the manufacturing industry is converging with ICT and changing into the era of smart manufacturing. In the smart factory, all machines and facilities are connected based on ICT, and thus security should be further strengthened as it is exposed to complex security threats that were not previously recognized. To reduce the risk of security incidents and successfully implement smart factories, it is necessary to identify key security factors to be applied, taking into account the characteristics of the industrial environment of smart factories utilizing ICT. In this study, we propose a 'hierarchical classification model of security factors in smart factory' that includes terminal, network, platform/service categories and analyze the importance of security factors to be applied when developing smart factories. We conducted an assessment of importance of security factors to the groups of smart factories and security experts. In this study, the relative importance of security factors of smart factory was derived by using AHP technique, and the priority among the security factors is presented. Based on the results of this research, it contributes to building the smart factory more securely and establishing information security required in the era of smart manufacturing.

A Study of Resource Utilization Improvement on Cloud Testing Platform

  • Kuo, Jong-Yih;Lin, Hui-Chi;Liu, Chien-Hung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2434-2454
    • /
    • 2021
  • This paper developed the software testing factory-cloud testing platform (STF-CTP) to address the software compatible issues in various smart devices. Software developers who only require uploading the application under test (AUT) and test script can test plenty of smart devices in STF-CTP. The challenge for the cloud test platform is how to optimize the resource and increase the performance in the limited resource. This paper proposed a new scheduling mechanism and a new process of the system operation which is based on the OpenStack platform. We decrease about 40% memory usage of OpenStack server, increase 3% to 10% Android device usage of STF-CTP, enhance about 80% test job throughput and reduces about 40% test job average waiting time.