
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, Jul. 2021 2434
Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.07.008 ISSN : 1976-7277

A Study of Resource Utilization
Improvement on Cloud Testing Platform

Jong-Yih Kuo*, Hui-Chi Lin and Chien-Hung Liu

Department of Computer Science and Information Engineering,
National Taipei University of Technology

Taipei, 106 Taiwan
[e-mail: {jykuo, huchlin, cliu}@ntut.edu.tw]

*Corresponding author: Jong-Yih Kuo

Received October 2, 2020; revised December 5, 2020; revised May 4, 2021; accepted May 24, 2021;
published July 31, 2021

Abstract

This paper developed the software testing factory-cloud testing platform (STF-CTP) to address
the software compatible issues in various smart devices. Software developers who only require
uploading the application under test (AUT) and test script can test plenty of smart devices in
STF-CTP. The challenge for the cloud test platform is how to optimize the resource and
increase the performance in the limited resource. This paper proposed a new scheduling
mechanism and a new process of the system operation which is based on the OpenStack
platform. We decrease about 40% memory usage of OpenStack server, increase 3% to 10%
Android device usage of STF-CTP, enhance about 80% test job throughput and reduces about
40% test job average waiting time.

Keywords: Android application testing, cloud-base testing, cloud resource management.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2435

1. Introduction

With the growing popularity of smart mobile devices, people are more and more dependent
on the App developed on the device. Therefore, users experience has been getting more and
more important in recent years [1] [2]. Users concern about the software compatibility on the
various smart devices rather than the hardware specification. Developers are aware of the
importance to the testing the App. However, testing on a single device is not enough. In recent
years, the specifications of mobile devices developed by different vendors are not the same.
Not only different OSs but also different sizes of devices may cause applications to make
errors on different devices. Therefore, compatibility testing is very important before the
software is shipped. The concerns of software compatibility are a major topic in smart device
manufacturers and thousands of hundreds of software developers as well.

The software factory laboratory at National Taipei University of Technology has developed
an integrated cloud testing platform, STF-CTP [3]. STF-CTP mainly focuses on the unit
testing and automated acceptance testing with Android devices. It can solve the compatible
issue on Android platform, which saves developers’ time and money. STF-CTP enables App
developers or testers to upload apps and test scripts for testing. After STF-CTP receives the
test, it will dispatch the work to integrated station (IS) located in OpenStack virtual machine.
[4] [5] [6] The IS connect to the specified device through Wi-Fi. After finish the test, Android
device will be released and return the test result. At last, developers can access the test report
and performance data via STF-CTP.

As the need of STF-CTP increases day by day, testers may want to upload a large number
of test jobs to execute tests. In order to execute many test jobs at one time, STF-CTP needs to
launch a lot of virtual machine to dispatch jobs to different IS. Besides, each testing device
can only execute one test at a time; so, only when IS finish converting testing video record, it
will release the device to let device get another testing job, which cost a lot of waiting time.
After whole jobs are finished, IS will not close it selves, which will waste resource of
OpenStack server. Therefore, how to use and allocate resources of devices and OpenStack
server become an important issue.
Ala'a Al-Shaikh et al. [7] propose a utilization schedule algorithm to filter all requests that do
not meet the optimal resource through layer-by-layer of sorting and puts the matching requests
into the schedule, which eventually gets the best use of the utilization schedule. Bo Xu et al.
[8] group virtual machines that are related to a certain service into a cluster and propose a
segmentation method that can reduce the overall bandwidth requirement after deployment.
How to use and allocate resources becomes an important issue. This study will explore how to
maximize the utilization of resources, thereby improving the consumption of resources to
achieve the same resources. The proposed architecture of this paper includes how to maximize
the utilization of resources, how to improve the consumption of resources, how to improve the
quality of STF-CTP production, and how to reduce average waiting time to the overall test.
The remainder of this paper is organized as follows. Section 2 presents related work and
method for finding the solution. In Section 3, we present an effective architecture to change
the quantity of Integration Station (IS) in each OpenStack virtual machine and manage IS
dynamical which can improve the resource utilization of STF-CTP. In addition, we propose a
method to improve the utilization of testing devices that can reduce the execution time and
average waiting time on the overall test. In Section 4, we conduct three experiments including
the utilization of OpenStack Server, the utilization of Android device, and the performance of
proposed STF-CTP architecture to confirm the effectiveness of the proposed solution. In
Section 5, we summarize the conclusions and the contributions of this paper.

2436 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

2. Related Work
This section introduces the background knowledge and research content related to this paper,
including the choice of cloud-computing platform, the introduction and application of STF-
CTP, how to make maximum use of resource utilization in cloud service, the algorithm of
scheduling and deploy virtual machine and how to minimize the makespan of tasks.

2.1 OpenStack
Rakesh Kumar et al. [9] conducted a comparative study of architecture, operating system
support, virtual machine migration and image management for several cloud-computing
platforms such as Eucalyptus, OpenStack, CloudStack, and OpenNebula. They conclude that
OpenStack is the most suitable solution for the cloud computing.

OpenStack is a free and open-source software platform for cloud computing and easy to
build and manage public and private clouds. It allowed users deploy virtual machines and other
instances that handle different tasks for managing a cloud environment. The STF-CTP is
developed under OpenStack.

2.2 STF-CTP
The STF-CTP, software testing factory cloud testing platform, is a cloud testing service
platform, developed by the National Taipei University of Technology software testing factory,
which is based on OpenStack cloud computing services and Web UI. It mainly focuses on the
unit testing and automated acceptance testing with Android devices. Acceptance testing
supports different Android automation tools, including Monkey [10], MonkeyTalk [11],
Robotium [12], UiAutomator [13] and Robot Framework [14]. In the STF-CTP environment,
test jobs will be dispatched by Rabbit Message Queue [15]. Integration station (IS) will receive
the job in rabbit message queue. The STF-CTP is required to execute many test jobs. It was
developed on OpenStack to build virtual machines, and manage IS. IS connects Android
device to execute test via Android Debug Bridge (ADB) [16]. After finish the test, Android
device will be released and return the test result. At last, developers can access the test report
and performance data via STF-CTP.

2.3 A Hierarchical Scheduling Strategy
A hierarchical scheduling strategy [17] addresses the problem of composition service
scheduling and resource allocation in the cloud, especially the data-intensive and compute-
intensive service. The implementation of each step regarded as the smallest unit and resource
allocation depends on the job completion rate which is based on the work as a weight to reduce
the work time to complete. Observing STF-CTP, we took the similar approach, but the scenario
of test application test is hard to implement like the data-intensive and compute-intensive
service. The software must be entirely executed on the target device to ensure the compatibility
of the operating version and the hardware difference.

2.4 Resource Utilization in Cloud Computing as an Optimization Problem
Ala'a Al-Shaikh et al. [7] combined 0/1 Knapsack Problem [18] and Activity-Selection
Problem [19] to propose a way to maximize resource scheduling. The paper mentioned that in
the case of a given resource, hundreds of requests accumulate over time to use that resource.
Each request has a profit index. For a given resource regarding profit obtained by utilizing that
resource and the number of time slices during which the resource will be utilized, they design

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2437

an algorithm. The algorithm filters all requests that do not meet the optimal resource through
layer-by-layer of sorting and puts the matching requests into the schedule, which eventually
gets the best use of the utilization schedule. Then obtain the maximum profit of that resource.

The shortcomings of the algorithm are that the use of 0/1 Knapsack Problem's picks up or
not pick up the request problem. The resource does not accept all requests and the requests
that are not put into the schedule will be released and will not be used.

2.5 Deployment Method of VM Cluster Based on Graph Theory
The deployment of the virtual machine is the core problem in the cloud computing. The
efficiency of the single virtual machine is too low; the overall bandwidth after deployment is
high. Therefore, it will be more efficient to group virtual machines that are related to a certain
service into a cluster and configure physical hosts in the form of a cluster.

Bo Xu et al. [8] use the energy minimization model to segment virtual machines into
different clusters. Then, Bo Xu et al. change the deployment of virtual machine cluster by
using max-flow min-cut problem that is based on graph cut theory. After that, the structure
assumes the shape of a network. When modeling an energy minimization network, add a
source point and a sink point to the network. This virtual machine segmentation method can
reduce the overall bandwidth requirement after deployment.

2.6 An Optimized Task Scheduling Algorithm in Cloud Computing
Scheduling of job and maintaining load is a main issue in cloud environment by considering
parameters such as throughput, resource utilization, cost, computational time, priority,
performance, bandwidth, resource availability. In order to provide better quality of service
(QoS), Shubham Mittal et al. [20] , Sharma et al. [21] , and Cui et al.[22] implement an optimized
task schedule algorithm to reduce the makespan by dispatching tasks into different resources.
This algorithm adapts the advantage of Min-Min, Max-Min and RASA algorithms to perform
various check for finding an optimized task which can lead to minimum makespan. Their
optimized task schedule algorithm first compute total execution time for task on each resources
and compare each resources execution time for tasks to decide which task will be dispatched
to which resource. Because this algorithm aims to reduce the makespan of all task, all the task
may will be dispatched to the fastest resource when other resources handle the execute time of
one task is greater than the total execute time of task in the fastest resource. This situation may
did not make good use of resource.

2.7 Self-Organizing Map
Scheduling jobs to minimize the completion time of tasks is important, as it can increase the
utilization, productivity, or profit of a cloud. In order to minimize the Job Completion Time
(JCT), Li et al. [23], determine task placement plan and resource allocation plan for jobs and
then formulate the problem of scheduling a single job as a Non-linear Mixed Integer
Programming problem. They focus on the problem of scheduling embarrassingly parallel jobs
composed of a set of independent tasks and consider energy consumption during scheduling.
Because each task should be placed on only one server, they define resource availability
constraint and energy consumption constraint to limit the total amount of computing resource
that can be allocated to that job on a server and to limit the total amount of energy that can be
consumed by a job.

2438 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

2.8 Comparisons of Related Approach
In this section, three approaches, Manikandan et al. [24], Pan et al. [25], and Veerendra et al.
[26], are compared with our proposed approach are shown in Table 1.

Table 1. The comparison experiment architecture
Approach Purpose Method Results

MCFCMA
[24]

To reduces load
balancing in Cloud
Quantum
Computation.

1. Modified canopy fuzzy c-means
(MCFCM) clustering algorithm to
solve the issues of overloading and
lag in load balancing.

2.Particle swarm optimization
algorithm is uses to facilitate the
optimal selection of virtual
machines.

To reduce load
balance, and improve
parallel execution of
tasks by measuring
the memory,
execution time, and
cost.

ARIMA
[25]

To exploiting real-
time trends of
performance changes
of cloud infrastruc-
tures and generate
dynamic workflow
scheduling plans.

1.ARIMA-time-series prediction
model.

2.Critical-path-duration-estimation-
based VM selection.

To reduce monetary
cost while following
constraints of
Service-Level-
Agreement.

AFO[26]

To improves speed
and resources by
adopting hybrid
technology.

1.Balance workload and enhance tasks
using certain Time period of
execution, Response Time of
Resources, Energy Utilization
criterion.

2.Adaptive Fruit Fly Optimization
technique improves comprehensive
process flow, Resource Response
time and optimizes adequate time.

To Scale down energy
consumption in the
cloud strategy.

STF-CTP
To improve the
utilization of testing
devices

1.The monitoring and dynamic
resource scheduling method which
is based on FIFOj.

2.Dynamic IS management.

To improve the
resource utilization
that can reduce the
execution time and
average waiting time
on overall test.

In the study [24], the research is through the use of independent tasks in cloud computing to
allocate resources through the summary of the improved canopy fuzzy c-means algorithm
(MCFCMA). In order to assign tasks to their corresponding resources, a particle swarm-based
optimization algorithm (PSO) is used. The proposed method can independent task selected
based on load feed-back cluster the requested task using MCFCMA and schedule a task to
each virtual machine. The proposed system overcomes issues in load balancing and load
scheduling; this can be proved by its precision and privacy calculation.
In the study [25], the researches address the performance-variation-aware workflow
scheduling problem by leveraging a time-series-based prediction model and a Critical-Path-
Duration-Estimation based (CPDE) VM Selection strategy. The proposed method can exploit
real-time trends of performance changes of cloud infrastructures and generate dynamic
workflow scheduling plans. This study performs extensive experimental case analysis over
real-world third-party commercial clouds and show the effectiveness of the proposed method.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2439

In the work [26], the research is based on Adaptive Fruit Fly Optimization (AFO) technique
called the metaphorical approach to optimize resources in cloud computing. Balance workload
and enhance results for all mentioned tasks using the certain Time period of execution,
Response Time of Resources (RTR), Energy Utilization Criterion Adaptive Fruit Fly
Optimization technique improves comprehensive process flow, Resource Response time and
optimizes adequate time. The proposed method can improve speed and resources by adopting
hybrid technology. The implemented model works entirely by an increase in utilization
thereby lower costs. Energy-intensive AFO-CS algorithms improve overall process flow and
reduce the total processing time and RTR.

By comparing with other cloud computing methods shown in Table 1, it can be seen that our
proposed approach is better than the three approaches for improving cloud computing resource
utilization.

3. The Optimization of STF-CTP Resource Management
This section describes the system architecture and workflow of STP-CTP, and analyzes the
utilization of CPU resource. Based on the analysis of the current process, we present a method
to optimize the resource of STF-CTP.

3.1 STF-CTP Operation Procedure and Architecture
STF-CTP bases on OpenStack to manage virtual machines and the rabbit message queue uses
as a communication bridge between the web server and virtual machines. Fig. 1 shows STF-
CTP operation model and procedure. First, developers will upload an application and test
scripts. When the web server receives test job, it will dispatch the job to rabbit message queue.
Integration station (IS) receives the job in rabbit message queue. IS will connects devices to
execute test via Android Debug Bridge (ADB). When finishing the test, IS will release devices.
Test result will transfer to rabbit message queue. Developers can review the test result through
the web server.

Fig. 1. STF-CTP operation model

Job scheduler of STF-CTP was followed Kuo et al. [27][28]. The monitoring and dynamic
resource scheduling method which is based on FIFO, except the current required resource was
occupied by another job. The next job will be executed earlier than previous one. Also with
reference to Kuo et al. [28], proposed the STF-CTP resource monitoring and management
service designed and applied enabled direct OpenStack operation and management. In addition,
the automated VM monitoring mechanism was incorporated in the STF-CTP, which provided
the STF-CTP with the operation statuses of all VM-related resources.

2440 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

Fig. 2. STF-CTP architecture

STF-CTP consists of the web server, rabbit message queue, OpenStack, and smart devices.
Web server is responsible for the test job scheduling. Rabbit message queue is used for inter-
process communication between the Web server and IS. OpenStack manages virtual machines.
Every virtual machine has its own IS. The smart devices execute the test and report the result
to IS. Each component has its elements, as shown in Fig. 2. The details are described below.
1. Web UI: It’s a user interface for developers.
2. Device Queue: The job is assigned to the device queue by resource scheduler depends on

the usage of the physical smart device.
3. Resource Scheduler: The scheduler updates the latest usage of devices, scheduling the job

in FIFO method.
4. Job Queue: The job will be dispatched to the device queue when the smart device is available.
5. Job Result Queue: This queue stores the test result for web server access.
6. IS: IS checks the job queue, connecting the devices to execute the job through the ADB.

The result will be reported to job result queue by IS as well.
7. ADB Daemon: It is a program installed on the smart device. IS will send the ADB

commands to ADB Daemon and ADB Daemon will execute the commands.
8. Device Agent: It is a monitor program that propose by Kuo et al. [28] that responsible for

the preparation of test jobs and monitors the network flow of the Apps during the test.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2441

Fig. 3. CPU utilization in different test job

3.2 Analysis of STF-CTP CPU Utilization
Table 2. Virtual machine specification

Machine Virtual Machine
OS Ubuntu 12.04 64-bits
CPU 2 Cores
Memory 2 GB
Disk 20 GB

0
10
20
30
40
50
60

1 5 9 13 17 21 25 29 33 37 41 45 49 53

UiAutomator Test

0
10
20
30
40
50
60

1 5 9 1317212529333741454953576165

Monkey Test

0
10
20
30
40
50
60

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

MonkeyTalk Test

0
10
20
30
40
50
60

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

Robot Framework Test

0
10
20
30
40
50
60

1 6 111621263136414651566166717681

Robotium Test

0

10

20

30

40

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Installer Test

2442 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

Table 3. The purpose of test job
Test job name Purpose

Installer test Ensures that the App can be installed under different conditions, for example,
for first-time installations, upgrades, complete or custom installations.

Robot Framework
test

Robot Framework is automation test framework and written in Python. It
supports keyword-driven and mainly used for regression testing and acceptance
test-driven development

Monkey test
Monkey is a command-line tool in Android that can run on a real device. It
sends user event streams such as key presses, touch screen inputs, gesture inputs
to the system to conduct stress test and test the stability and robustness of Apps.

UiAutomator test
UiAutomator is released after Android 4.1. It is used to do UI testing. For
example, the login interface, enter the wrong username and password, then click
the login button to see if it can log in or whether there is error message.

MonkeyTalk test

MonkeyTalk’s platform is mainly composed of 3 parts: MonkeyTalk IDE,
MonkeyTalk Agent and MonkeyTalk Scripts.
1. MonkeyTalk IDE - A system application for recording, playing and
developing test programs.
2. MonkeyTalk Agent - The library needs to be included in the "app to be tested"
to drive the test.
3. MonkeyTalk Script - Understandable and maintainable test program.

Robotium test
Robotium is a black-box testing. Developers only need APK rather than source
code. With the help of Robotium, developers can write functional tests and
acceptance tests across several activities.

Fig. 4. Testing procedure on device

The CPU is the major resource in the STF-CTP. The specification of the virtual machine show
in Table 2. In Fig. 3, X-axis is execution time, and Y-axis is the utilization of CPU. We
observed that the peak of CPU usage is about 50% in six different tests, and it happens on the
final stage of the entire test. Table 3 shows the purpose of six different test jobs. The
application we use to run the test is OnMyWay that was developed by STF-CTP team. We
design four different scripts except Installer test and Monkey test. It is because Installer test is
to test whether application can be successfully install or not and Monkey test is to simulate the

Setup Phase Exectute Tear Down

Connect smart device

Install application on
target device

Start to record video

Run the test on various
smart device

Stop recording video

Convert video

Uninstall application

Disconnect and release
smart device

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2443

user touch the screen, pressing keyboard and other operations, mainly aimed at the robustness
and stability of the application. The rest of the CPU usage remains low. The reason is that the
test is executed on the device and CPU resource is not required in this phase. After that, the
test details will be converted to the test video that consumes the CPU resource at the end of
the test.

Fig. 4 shows three steps for executing the test job on the smart device. The details are
described below.
1. Set up: Connect and wake up the smart device through Wi-Fi. Install and launch the Apps

according to the test type. Launching the recording program records the test video while
executing the test.

2. Execute test: Execute the test according to the test type. Some tests are executed by the
smart device, others executed by PC terminal.

3. Tear down: Terminate the recorded program, and get the test video from the smart device
to IS. After converting the test video, it will uninstall the Apps and release the smart
device.

3.3 Proposed Method on STF-CTP
This section describes the procedures of our proposed method on STF-CTP.

3.3.1 Test Environment Setup

Fig. 5. Scheduler decision tree of Robot Framework job

A virtual machine has more than one IS. In other words, a virtual machine can execute multiple
tests at the same time. It also means that each type of test has its method. Unfortunately, one
virtual machine only can execute one Robot Framework test. Robot Framework is not
supported parallel execution, but it can execute with another test type at same time. Fig. 5
illustrates how the scheduler dispatches the Robot Framework job.

2444 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

Table 4. Modified method for parallel execution
Test type Modification method

Installer, Monkey,
UiAutomator,
Robotium

It requires the "-s" variable to decide which Android device to execute the
test. "-s": IP or a serial number of Android device.

MonkeyTalk

MonkeyTalk uses ant script to execute the test, requires four variables to
decide which Android device to execute the test.
"-port": Android device connecting port
"-adbLocalPort": ADB local port for connection of ADB.
"-adbRemotePort": ADB remote port for connection ADB.
"-adbSerial": IP or a serial number of Android device.

Robot Framework
It requires the "ANDROID_SERIAL" environment variable to decide
which Android device to execute the test.
"- ANDROID_SERIAL ": IP or a serial number of Android device.

In order to make all the test types can be executed in parallel; each test type will be modified

as shown in Table 4. Robot Framework test type is modified because it does not support
parallel execution. Therefore, the modification method of Robot Framework makes it execute
with tests of other test types.

3.3.2 Effect of Quantity of IS

Fig. 6. Execution time under different quantity of IS

Fig. 7. Average waiting time under different of quantity IS

Regarding STF-CTP architecture, the quantity of IS will have different test result. This paper
takes monkey test for example because it consumes the highest CPU average utilization among
all tests. We assumed that there are 20 money jobs in the queue, waiting for executing with
different quantity of IS. Because of the limitation of our testing environment, it supported to
create eight IS at the same time.

It can be observed that the execution time cannot have obvious improvement when the
quantity of IS more than four (see Fig. 6). As shown in Fig. 7, the average waiting time

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(M
in

)

Qty. of IS
Ideal Simulation

1300
1350
1400
1450
1500
1550
1600
1650
1700

1 2 3 4 5 6 7 8

Se
co

nd

Qty of IS
Average Time

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2445

increased with an increase of the quantity of IS. Under this circumstance, we can conclude the
quantity of IS will be an important factor of the execution time and average time.

Setup Phase Exectute Tear Down

Connect smart device

Install application on
target device

Start to record video

Run the test on various
smart device

Stop recording video

Uninstall application

Disconnect and release
smart device

Convert video

Fig. 8. Revised tear down procedure

3.3.3 Improve the Utilization of Device
Originally, the device resource will be released after converting the video which makes the
device occupied and cannot be released until finish converting video. If the device is occupied,
it cannot receive the new job, which will make the test job’s average waiting time longer.
Hence, we proposed a new tear down the procedure to release the device resource earlier
before converting videos. The released device can be assigned or executed by other IS job
regardless of converting video. Fig. 8 depicts the revised tear down procedure.

3.3.4 Dynamic IS management

Fig. 9. IS management model

To optimize the quantity of IS in OpenStack servers, we propose a model to achieve IS
dynamic, as shown in Fig. 9. Each component is described below:
1. IS Manager: Get the status of OpenStack server, virtual machine and IS by Server Manager

and IS Monitor. And, manage the quantity of IS and a virtual machine as well.
2. IS Monitor: Monitor the status of IS and communicate with IS.
3. Server Manager: Monitor the status of the server and create or delete virtual machine by

OpenStack API.
While IS is dynamic, the status of IS become three types from two types. Each component

is described below:
1. Idle: IS is available to execute the new job.
2. Busy: IS is busy and cannot execute a new job until job finish.
3. Shutdown virtual machine: When the closed IS is the only IS on the virtual machine, it needs

to be closed with the virtual machine as well. Because it takes a short time to close the
virtual machine, this state is added to let STF-CTP know the state of this IS which will
avoid assigning the job to this IS.

2446 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

3.3.5 Mechanism of Dynamic IS
The IS dynamic mechanism having two-part, dynamic start IS and dynamic shutdown IS. The
details are described below.
1. Dynamic start IS: When STF-CTP has a job to do, and the total IS quantity (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is less

than the maximum quantity of IS (𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚), and the quantity of job (𝐽𝐽𝐽𝐽𝐽𝐽) is more than the
quantity of idle IS (𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), STF-CTP will start the quantity of 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, as shown in equation
(1). And the CPU and memory utilization of OpenStack server decide the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚. If the
utilization is over 90%, STF-CTP will not start new IS.

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝐽𝐽𝐽𝐽𝐽𝐽 − 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝐼𝐼𝐼𝐼 𝐽𝐽𝐽𝐽𝐽𝐽 > 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (1)

2. Dynamic shutdown IS: When IS is idle (𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) for a while (timeout 𝛼𝛼), STF-CTP

will shutdown the quantity of 𝐼𝐼𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 . Timeout 𝛼𝛼 is set by STF-CTP manager, as
shown in formula (2). The manager can adjust Timeout 𝛼𝛼 according to the test interval and
the number of test jobs. If the Timeout 𝛼𝛼 value is very big, it may cause unnecessarily
memory usage of the server.

𝐼𝐼𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑤𝑤𝑛𝑛 = 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝛼𝛼 (2)

3.3.6 Proposed System Architecture

Fig. 10. Proposed system architecture

Adding and modifying five components on original STF-CTP architecture, details have shown
in Fig. 10. Each component is described below:
1. Resource Scheduler: Add Robot Framework decision tree into scheduler which is still first

in first out. If Robot Framework job cannot be executed, STF-CTP will let next job execute
first.

2. IS: Receive web server notification and execute the job from Rabbit Message Queue. Create
or terminate IS on the virtual machine by receiving the command from IS Manager. When
IS itself is idle and over timeout 𝛼𝛼 , it will be shut down and notify Server Manager to shut
down the virtual machine as well if the IS is the last one on the virtual machine.

3. Server Manager: Monitor OpenStack server and deal with the problem about the virtual
machine by OpenStack API.

4. IS Monitor: Monitor IS and communicate with IS.
5. IS Manager: Receive the status of OpenStack server, virtual machine and IS from Server

Manager and IS Monitor. Manage the quantity of IS and virtual machine and decide the
new IS create at which virtual machine and which IS execute the job.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2447

By using IS Manager to dynamically add or delete IS and virtual machine, it can save a lot
of waiting time and make good utilize the resource. IS Manager monitors IS status through IS
Monitor, knowing if IS ready for work or a type of work test in progress. Assignment work is
also transmitted through IS Monitor to the IS. When IS received instructions, it would add a
new IS it their own virtual machine. When the entire virtual machine mounts the maximum
load capacity IS, it is necessary to learn from the Server Manager whether the OpenStack
server can add a new virtual machine. Server Manager will complete the addition or deletion
of virtual machine through calling OpenStack API. We can add a new condition that only
when OpenStack server uses no more than 90% of the CPU and Memory then OpenStack can
add a new virtual machine.

Fig. 11. Proposed system workflow

3.3.7 Proposed System Workflow
Fig. 11 illustrates the new workflow on STF-CTP, and details are described as below. The
following procedure starts with the star mark is the new procedure.
1. An application under test and test scripts are uploaded by developers.
2. *IS Manager gets information by IS Monitor and Server Monitor and create new IS.
3. The job is assigned to Rabbit Message Queue by the web server.
4. *IS Manager notifying IS to get the test job from Rabbit Message Queue.
5. Integration Station (IS) receives job in Rabbit Message Queue.
6. IS connects the smart device to execute test via Android Debug Bridge (ADB). The smart

device will be released when the test is finished.
7. The test result will be transferred to Rabbit Message Queue.
8. Developers can review the test result through the web server.
9. *IS will shut down itself when it’s idle time over timeout.

4. Experimental Results
The three experiments were conducted to verify the different objectives of the system.

4.1 Experimental Environment
The experiments were conducted in a 100-Mbit network environment, in which the
combination of 802.11-n and 802.11-ac wireless networks was used. A physical machine was
employed as the CTP server, and five VMs that had been turned on were used as the test-
running units. Ten smart devices with Android platform were used as the hardware devices for
running tests. The environments are shown in Table 5 and Table 6. The mobile phone brands
which shown in Table 7 included HTC, Sony, LG, Samsung, and OPPO, and the Android
operating system version is from 4.1 to 4.4. Table 8 lists the test application what we use to
develop the test script and run test.

2448 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

Table 5. CTP web server specifications
Machine CTP server

OS Windows 7 64-bits

CPU Intel Core i7-4700 6M Cache
3.40GHz (4 Cores)

Memory 8 GB
Storage 128GB Solid State Disk

Disk 3 TB

Table 6. OpenStack server specifications
Machine OpenStack Server
Version OpenStack Kilo (April 2015)

OS Ubuntu 12.10 64-bits

CPU Intel Xeon E5-2630 15M
Cache 2.30GHz (6 Cores) *2

Memory 116 GB

Table 7. The smart device specifications
Brand Name Android version Quality
HTC Butterfly S 4.3 1
HTC Butterfly 2 4.3 1

Samsung S3 4.1.2 1
Sony Xperia Z2a 4.4 1
Sony Xperia Z3 4.4.4 1
Sony Xperia Z3 C 4.4.4 1
LG G2 4.2.2 1
LG G3 4.4.2 1

OPPO N1 mini 4.3 1
OPPO N1 4.2 1

Table 8. Test application

App name Version Use instructions

ezWeight 1.0 Weight monitoring recorder, capable of calculating and
recording BMI.

Text Edit 1.5 A notebook that can add and delete files.
Calculator 1.1 Simple calculation function.

Bodha Converter 1.0 Conversion between each carry and ASCII Code.

4.2 Utilization of OpenStack Server
To compare the utilization of OpenStack server, Table 9 shows the test scenario between the
original architecture and proposed architecture. The first fifty tests will be executed and the
coming fifty tests will be executed after five minutes on 10 Android devices. The original
architecture uses 10 IS and proposed architecture IS are dynamic according to the usage and
the test job amount.

Table 9. Test application
Architecture Original architecture Proposed architecture

Quantity of test job 50+50 50+50
Test job interval 5 minutes 5 minutes
Quantity of IS 10 dynamic

Quantity of smart device 10 10

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2449

According to the experimental test result in Fig. 12 and Fig. 13, proposed architecture has
higher CPU usage and save about 40% usage of memory capacity than original architecture in
average. The main reason is each VM supports multiple IS in proposed architecture result in
less VM needed in execution. In addition, the drop curve during 601s to 701s in proposed
architecture is the idle VMs were closed, which also can save unnecessary memory usage.

Fig. 12. CPU utilization of OpenStack server

Fig. 13. Memory utilization of OpenStack server

4.3 Utilization of Android Device
This section will present the proposed architecture improvement about utilization of Android
device. There two kinds of video on STF-CTP. One is video only and the other is a video
with the subtitle, so the experiment executes two different tests. The test pattern is also
shown in Table 10. The Android device specification is shown in Table 11.

Table 10. Utilization of Android device experiment specifications
Test type Test execution time Video type Quality of test job
Monkey 24 minutes Video 1

Robot Framework 37 minutes Video and subtitle 1

Table 11. Android device specifications
Brand Name Android version
HTC Butterfly 2 4.2.2

The test result is shown in Fig. 14. It can be observed that the usage of Android device in

original architecture has a short idle time because Android device was not released until

0

2

4

6

8

10

12

14

16

18
1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

73
9

78
0

82
1

86
2

90
3

94
4

98
5

10
26

10
67

11
08

11
49

11
90

12
31

Pe
rs

en
ta

ge
 (%

)

Second
Proposed architecture Oringinal architecture

0

5

10

15

20

25

30

1 52 10
3

15
4

20
5

25
6

30
7

35
8

40
9

46
0

51
1

56
2

61
3

66
4

71
5

76
6

81
7

86
8

91
9

97
0

10
21

10
72

11
23

11
74

12
25

Pe
rs

en
ta

ge
 (%

)

Second

Proposed architecture Oringinal architecture

2450 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

converting the video finish. Oppositely, there is no idle Android device in switching test based
on our proposed architecture. The main change is the Android device will be released before
converting the video; therefore, the Android device will immediately be assigned to execute
other test job so that proposed architecture’s device will be occupied more than the original
architecture’s device which increases the utilization of Android device and reduces the
execution time. To sum up, the utilization of Android device in proposed architecture is better
than the original one.

Fig. 14. Utilization of Android device

4.4 Performance of Proposed STF-CTP

Table 12. The performance of STF-CTP experiment specifications
Architecture Original architecture Proposed architecture

Quality of test jobs 60、120、240 60、120、240

Quality of virtual machine 5 Dynamic
(maximum is 5)

Quality of Android device 10 10

The experiment shows the improvement of the proposed architecture by executing 60, 120,
240 tests. Detail is shown in Table 12.

Fig. 15. Average Waiting Time of STF-CTP Test

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

10 13
0

25
0

37
0

49
0

61
0

73
0

85
0

97
0

10
90

12
10

13
30

14
50

15
70

16
90

18
10

19
30

20
50

21
70

22
90

24
10

25
30

26
50

27
70

28
90

30
10

31
30

32
50

33
70

34
90

36
10

37
30

38
50

39
70

in
 u

se

Second
Proposed architecture Oringinal architecture

578

1136

2332

0

500

1000

1500

2000

2500

60 jobs 120 jobs 240 jobs

se
co

nd
s

Jobs

original architecture proposed architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2451

Fig. 16. Throughput of STF-CTP Test

The average waiting time of STF-CTP test is shown in Fig. 15. It can be observed that the

proposed one is less than original one because the quantity of IS in proposed architecture is
more than original architectures. Although the overhead in proposed architecture is to create
new IS, it still takes less time than the original one.

The throughput test result of STF-CTP test is shown in Fig. 16. Multiple IS in one VM can
execute more tests in parallel without waiting for other VM available. The two results show
that the proposed architecture can reduce the average waiting time and enhance the throughput
with the same OpenStack server, Android device and hardware resource.

After 2015, the scheduler technology has been transferred to the organization called Taiwan
Testing and Certification Center (ETC) [29] where the technology is used and extended for
commercial/business operations. The extension of the technology mainly focuses on the
enhancement of system functionality to support security testing and the change of system
architecture to improve the overall performance through parallelism by using additional
servers. The core technology of the scheduler used in the framework of ETC has not been
optimized or further improved. Table 13 lists the comparison of the two frameworks.

Table 13. Comparison of two architectures
Approach Purpose Technologies

The proposed
research

To improve the resource utilization
that can reduce the execution time and
average waiting time on the overall
test.

Expand the FIFO-based monitoring,
dynamic resource scheduling methods
and dynamic IS management.

Taiwan Testing
and Certification
Center [29]

To support mobile application testing
for commercial/business operations to
improve bug discovery rate, and to
lower the cost.

Extend the system architecture to
enable parallel computing for
improving the performance.

As can be seen from Table 13, this study has expanded the FIFO-based monitoring, dynamic
resource scheduling methods and dynamic IS management. The Taiwan Testing and
Certification Center was transformed into a commercial operation after the transfer of the
technology bank. The work of focus is on how to use this technology to guide companies to
efficiently test their mobile software application, and to create test cases based on test methods
to lower the cost for commercial/business operations.

5. Conclusion
This paper proposes an effective architecture to change the quantity of IS in each OpenStack
virtual machine and dynamically manage IS which can improve the resource utilization of

11

46

74

108
120

23
41

57
68

84

101

120

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40

Te
st

minutes

purposed architecture oringinal architecture

2452 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

STF-CTP. In addition, we propose a scheduling method to improve the utilization of testing
devices that can reduce the execution time and average waiting time on overall test. We
decrease about 40% memory usage of OpenStack server, increase 3% to 10% Android device
usage of STF-CTP, enhance about 80% test job throughput and reduces about 40% test job
average waiting time.

In future, we hope that Robot Framework test job can be supported in parallel execution,
and improve the test job average waiting time by predicting the execution time of each test job.
It can reduce the test job average waiting time by scheduling the test job according to the
completion of test job also let IS dynamic can support load balance on the virtual machine.

Acknowledgment
This research was supported by Ministry of Science and Technology, R.O.C. program MOST
106-2221-E-027-018-MY2.

References
[1] Yeong-Jun Kim, Jae-Wook Jeon, “Benchmarking Java application using JNI and native C

application on Android,” in Proc. of The 12th International Conference on Control, Automation
and Systems, pp. 284-288, 2012.

[2] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt, “Towards mutation analysis of
Android Apps,” in Proc. of IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 1-10, 2015. Article (CrossRef Link).

[3] STF-CTP, “Cloud Testing,” 2015. Available: http://www.openfoundry.org/of/projects/2193.
[4] Raiyani Kashyap, Sanjay Chaudhary, P. M. Jat, “Virtual machine migration for back-end mashup

application deployed on OpenStack environment,” in Proc. of International Conference on
Parallel, Distributed and Grid Computing (PDGC), pp. 214-218, 2014. Article (CrossRef Link).

[5] Salami Suhas Sahasrabudhe, Shilpa S. Sonawani, “Comparing OpenStack and VMware,” in Proc.
of International Conference on Advances in Electronics, Computers and Communications
(ICAECC), pp. 1-4, 2014. Article (CrossRef Link).

[6] Jose Teixeira, “Developing a Cloud Computing Platform for Big Data: The OpenStack Nova case,”
in Proc. of International Conference on Big Data (Big Data), 2014. Article (CrossRef Link).

[7] A. Al-Shaikh, H. Khattab, A. Sharieh, and A. Sleit, “Resource Utilization in Cloud Computing as
an Optimization Problem,” International Journal of Advanced Computer Science and Application
(IJACSA), vol. 7, no. 6, 2016. Article (CrossRef Link).

[8] Z. Peng, W. Ke, M. Zhong, and A. M. Gates, “Deployment method of VM cluster based on graph
theory for cloud resource management,” IET Communications., vol. 11, no. 5, pp. 622–627, 2017.
Article (CrossRef Link).

[9] Rakesh Kumar, Neha Gupta, Shilpi Charu, Kanishk Jain, Sunil Kumar Jangir, “Open Source
Solution for Cloud Computing Platform Using OpenStack,” International Journal of Computer
Science and Mobile Computing, vol. 3, no. 5, pp. 89-98, 2014. Article (CrossRef Link).

[10] Google, Inc., “Monkey,” 2015. Available: http://developer.android.com/tools/help/monkey.html.
[11] Cloudmonkey LLC, “MonkeyTalk,” 2015 Available:

https://www.cloudmonkeymobile.com/monkeytalk.
[12] Chien-Hung Liu, Chien-Yu Lu, Shan-Jen Cheng, Koan-Yuh Chang, Yung-Chia Hsiao, ҳeng-Ming

Chu, “Capture-Replay Testing for Android Applications,” in Proc. of International Symposium on
Computer, Consumer, and Control (IS3C), pp. 1129-1132. 2014. Article (CrossRef Link).

[13] Google, Inc., “UiAutomator,” 2015. Available:
http://developer.android.com/tools/help/uiautomator.

http://dx.doi.org/doi:%2010.1109/ICSTW.2015.7107450
http://www.openfoundry.org/of/projects/2193
http://dx.doi.org/doi:%2010.1109/PDGC.2014.7030744
http://dx.doi.org/doi:%2010.1109/ICAECC.2014.7002392
http://dx.doi.org/doi:10.1109/BigData.2014.7004496
http://dx.doi.org/doi:10.14569/IJACSA.2016.070643
http://dx.doi.org/doi:%2010.1049/iet-com.2016.0071
http://dx.doi.org/doi:%2010.13140/2.1.1695.9043
http://developer.android.com/tools/help/monkey.html
https://www.cloudmonkeymobile.com/monkeytalk
http://dx.doi.org/doi:%2010.1109/IS3C.2014.293
http://developer.android.com/tools/help/uiautomator

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2453

[14] Jian-Ping, Liu, Juan-Juan, Liu, Dong-Long Wang, “Application Analysis of Automated Testing
Framework Based on Robot,” in Proc. of Third International Conference on Proceedings of
Networking and Distributed Computing (ICNDC), pp. 194-197, 2012. Article (CrossRef Link).

[15] Maciej Rostanski, Krzysztof Grochla, Aleksander Seman, “Evaluation of highly available and
fault-tolerant middleware clustered architectures using RabbitMQ,” in Proc. of Federated
Conference on Computer Science and Information Systems, pp. 879-884, 2014.
Article (CrossRef Link).

[16] Mingzhe Xu, Weiqing Sun, Mansoor Alam, “Security Enhancement of Secure USB Debugging in
Android System,” in Proc. of The 12th Annual IEEE Consumer Communications and Networking
Conference, 2015. Article (CrossRef Link).

[17] Kuan-Rong Lee, Meng-Hsuan Fu, Yau-Hwang Kuo, “A hierarchical scheduling strategy for the
composition services architecture based on cloud computing,” in Proc. of The 2nd International
Conference on Next Generation Information Technology (ICNIT), pp. 163-169, 2011.

[18] M. Hristakeva and D. Shrestha, Shrestha, “Different Approaches to Solve the 0/1 Knapsack
Problem,” in Proc. of Midwest Instruction and Computing Symposium, 2005.

[19] V. K. Patel and M. H. Pandya, “Learning of Scheduling Algorithm with Maximum Compatible
Activity or Minimum Makespan,” International Journal of Engineering Development and
Research (IJEDR), vol. 1, no. 2, pp. 121-124, 2014.

[20] S. Mittal and A. Katal, “An Optimized Task Scheduling Algorithm in Cloud Computing,” in Proc.
of 2016 IEEE 6th International Conference on Advanced Computing (IACC), pp. 197–202, 2016.
Article (CrossRef Link).

[21] Sharma, Arpita and Kumar Gupta, Amit and Goyal, Dinesh, “An Optimized Task Scheduling in
Cloud Computing Using Priority,” in Proc. of 3rd International Conference on Internet of Things
and Connected Technologies (ICIoTCT), 2018 held at Malaviya National Institute of Technology,
Jaipur (India) on March 26-27, 2018. Article (CrossRef Link).

[22] Hongyan Cui, Xiaofei Liu, Tao Yu, Honggang Zhang, Yajun Fang, Zongguo Xia, “Cloud Service
Scheduling Algorithm Research and Optimization,” Security and Communication Networks, vol.
2017, 2017. Article (CrossRef Link)

[23] L. Shi, Z. Zhang, and T. Robertazzi, “Energy-Aware Scheduling of Embarrassingly Parallel Jobs
and Resource Allocation in Cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 6, pp. 1607–
1620, Jun. 2017. Article (CrossRef Link).

[24] N. Manikandan and A. Pravin Albert, “Hybrid‐based novel approach for resource scheduling
using MCFCM and PSO in cloud computing environment,” Concurrency and Computation
Practice and Experience, pp. 1-9, 2019. Article (CrossRef Link).

[25] Y. Pan, S. Wang, L. Wu, Y. Xia, W. Zheng, S. Pang, Z. Zeng, P. Chen and Y. Li, “A Novel
Approach to Scheduling Workflows Upon Cloud Resources with Fluctuating Performance,”
Mobile Networks and Applications, vol. 25, pp. 690–700, 2020. Article (CrossRef Link).

[26] P. Veerendra, and K. Thirupathi Rao, “Nature-inspired cloud processing theory of optimization for
adaptivetask schedule,” Materials Today: Proc., 2020. Article (CrossRef Link).

[27] Jong-Yih Kuo, T. Y. Chien, “A Novel Approach for Resource Monitoring and Scheduling on
Cloud Testing Platform,” in Proc. of the Tenth Taiwan Conference on Software Engineering,
Nantou, Taiwan, 2014. Article (CrossRef Link)

[28] Jong-Yih Kuo, C. Liu and W. T. Yu, “The Study of Cloud-Based Testing Platform for Android,”
in Proc. of IEEE International Conference on Mobile Services, New York, NY, pp. 197-201, 2015.
Article (CrossRef Link).

[29] Taiwan Testing and Certification Center. https://www.etc.org.tw/default.aspx

http://dx.doi.org/%20doi:%2010.1109/ICNDC.2012.53
http://dx.doi.org/doi:%2010.15439/2014F48
http://dx.doi.org/doi:10.1109/CCNC.2015.7157959
http://dx.doi.org/doi:%2010.1109/IACC.2016.45
https://dx.doi.org/10.2139/ssrn.3166077
https://doi.org/10.1155/2017/2503153
http://dx.doi.org/doi:%2010.1109/TPDS.2016.2625254
http://doi.org/10.1002/cpe.5517
http://doi.org/10.1007/s11036-019-01450-0
https://doi.org/10.1016/j.matpr.2020.10.266
http://dx.doi.org/10.6841/NTUT.2013.00568
https://doi.org/10.1109/MobServ.2015.36
https://www.etc.org.tw/default.aspx

2454 Kuo et al.: A Study of Resource Utilization Improvement on Cloud Testing Platform

Jong-Yih Kuo received the Ph.D. degree in Computer Science and Information
Engineering from National Central University in Taiwan in 2007. He is a Professor in the
Computer Science and Information Engineering at Taipei University of Technology in
Taiwan. His current research interests include software engineering and intelligent system.

Hui-Chi Lin is currently pursuing a master’s degree in the School of Computer Science and
Information Engineering at Taipei University of Technology in Taiwan. Her research
interests include software engineering, and machine learning.

Chien-Hung Liu received his M.S. degree in Electrical Engineering from University of
Southern California in 1994, and his Ph.D. degree in Computer Science and Engineering from
University of Texas at Arlington in 2002. He is currently an associate professor of Computer
Science and Information Engineering Department at National Taipei University of
Technology, Taiwan. His research interests include software testing, vocal detection, and
software engineering.

