• Title/Summary/Keyword: Smart Energy Protocol

Search Result 94, Processing Time 0.033 seconds

Implementation and Analysis of CoAP-Based Lightweight OpenADR2.0b protocol for Smart Energy IoT Environment (스마트 에너지 IoT를 위한 CoAP 기반 Lightweight OpenADR2.0b 프로토콜의 구현 및 분석)

  • Park, Heon-Il;Kim, Se-Young;Kang, Seong-Cheol;Park, Hyun-Jin;Kim, Il-Yeon;Choi, Jin-Seek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.904-914
    • /
    • 2017
  • For efficient energy usage, the concept of demand response has been emerged and thereby Open Automated D emand Response(OpenADR) protocol is developed as a standard protocol to provide automated demand response. There have been emerging trends on the demand response services using the Internet of Things(IoT) for smart h ome energy management. In this smart home energy IoT environment, a lightweight protocol is needed rather tha n the existing HTTP/ XML based OpenADR protocol for demand response services since many small devices wi ll be interconnected. In this paper, we propose a lightweight OpenADR protocol based on CoAP protocol for pro viding demand response service in Smart Energy IoT environment, implement the proposed CoAP-based protocol, and analyzed the performance compared to existing HTTP/ XML-based OpenADR 2.0b protocol.

Device Authentication Protocol for Smart Grid Systems Using Homomorphic Hash

  • Kim, Young-Sam;Heo, Joon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.606-613
    • /
    • 2012
  • In a smart grid environment, data for the usage and control of power are transmitted over an Internet protocol (IP)-based network. This data contains very sensitive information about the user or energy service provider (ESP); hence, measures must be taken to prevent data manipulation. Mutual authentication between devices, which can prevent impersonation attacks by verifying the counterpart's identity, is a necessary process for secure communication. However, it is difficult to apply existing signature-based authentication in a smart grid system because smart meters, a component of such systems, are resource-constrained devices. In this paper, we consider a smart meter and propose an efficient mutual authentication protocol. The proposed protocol uses a matrix-based homomorphic hash that can decrease the amount of computations in a smart meter. To prove this, we analyze the protocol's security and performance.

A Energy Theft Traceback Protocol in a Smart Grid Environment (스마트 그리드 환경에서 에너지 도둑 추적 프로토콜)

  • Jeong, Eun-Hee;Lee, Byung-Kwan;Ahn, Hui-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.534-543
    • /
    • 2015
  • This paper proposes an Energy Theft Traceback Protocol(ETTP) based on Logging and Marking that can trace Energy Theft back in Smart Grid Environment. The ETTP consists of the following three phases. First, it classifies Energy Theft Type into Measurement Rejection and Data Fabrication by generating an Energy Theft Tree. Second, it detects an Energy Theft by using the Energy Theft Tree. Finally, it trace an Energy Theft back by using the Logging Table of a Router and the Marking Information of a Packet. The result of its simulation shows that the Detection Ratio of Energy Theft is estimated at 92% and the Success Ratio of Energy Theft Traceback at 93%. Therefore, the ETTP not only reduces such risk factors as Forgery and Tampering about Billing information but also provides safe and reliable Smart Grid environment.

A Balanced Energy Consumption Strategy using a Smart Base Station in Wireless Sensor Networks (무선 센서 네트워크에서 스마트기지국을 이용한 균형된 에너지소비 방안)

  • Park, Sun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.458-465
    • /
    • 2014
  • In this paper, we propose a strategy to distribute the energy consumption over the network. The proposed strategy is based on geographic routing. We use a smart base station that maintains the residual energy and location information of sensor nodes and selects a head node and an anchor node using this information. A head node gathers and aggregates data from the sensor nodes in a target region that interests the user. An anchor node then transmits the data that was forwarded from the head node back to the smart base station. The smart base station extends network lifetime by selecting an optimal head node and an optimal anchor node. We simulate the proposed protocol and compare it with the LEACH protocol in terms of energy consumption, the number of dead nodes, and a distribution map of dead node locations.

Development of Smart Energy Profile(SEP) for Integrate Energy Storage System(ESS) at Smart Home (에너지 저장 시스템의 스마트 홈 연동을 위한 SEP 개발)

  • Lee, Sang-hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.678-680
    • /
    • 2016
  • Due to changes in the energy environment, it's very popular to introduce the solar energy at home. More effective energy management is achieved together with an energy storage system(ESS). The electricity generated by solar can be used effectively to achieve the peak cut and price reduction. In this paper, we developed Smart Energy Profile(SEP) to make an ESS as a component of home energy management system(HEMS) cooperating with home network. First, we defined the functions equipped on the ESS and then developed a standard-based protocol to achieve compatibility between products. Our main contribution is to establish the foundation to introduce the HEMS at home.

An Energy Efficient Intelligent Method for Sensor Node Selection to Improve the Data Reliability in Internet of Things Networks

  • Remesh Babu, KR;Preetha, KG;Saritha, S;Rinil, KR
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3151-3168
    • /
    • 2021
  • Internet of Things (IoT) connects several objects with embedded sensors and they are capable of exchanging information between devices to create a smart environment. IoT smart devices have limited resources, such as batteries, computing power, and bandwidth, but comprehensive sensing causes severe energy restrictions, lowering data quality. The main objective of the proposal is to build a hybrid protocol which provides high data quality and reduced energy consumption in IoT sensor network. The hybrid protocol gives a flexible and complete solution for sensor selection problem. It selects a subset of active sensor nodes in the network which will increase the data quality and optimize the energy consumption. Since the unused sensor nodes switch off during the sensing phase, the energy consumption is greatly reduced. The hybrid protocol uses Dijkstra's algorithm for determining the shortest path for sensing data and Ant colony inspired variable path selection algorithm for selecting active nodes in the network. The missing data due to inactive sensor nodes is reconstructed using enhanced belief propagation algorithm. The proposed hybrid method is evaluated using real sensor data and the demonstrated results show significant improvement in energy consumption, data utility and data reconstruction rate compared to other existing methods.

Improvement of CH selection of WSN Protocol

  • Lee, WooSuk;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.53-58
    • /
    • 2017
  • A WSN (Wireless Sensor Network) is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Improving the Reliability of IEEE 802.11s Based Wireless Mesh Networks for Smart Grid Systems

  • Kim, Jaebeom;Kim, Dabin;Lim, Keun-Woo;Ko, Young-Bae;Lee, Sang-Youm
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.629-639
    • /
    • 2012
  • A challenge faced by smart grid systems is providing highly reliable transmissions to better serve different types of electrical applications and improve the energy efficiency of the system. Although wireless networking technologies can provide high-speed and cost-effective solutions, their performance may be impaired by various factors that affect the reliability of smart grid networks. Here, we first suggest the use of IEEE 802.11s-based wireless LAN mesh networks as high-speed wireless backbone networks for smart grid infrastructure to provide high scalability and flexibility while ensuring low installation and management costs. Thereafter, we analyze some vital problems of the IEEE 802.11s default routing protocol (named hybrid wireless mesh protocol; HWMP) from the perspective of transfer reliability, and propose appropriate solutions with a new routing method called HWMP-reliability enhancement to improve the routing reliability of 802.11s-based smart grid mesh networking. A simulation study using ns-3 was conducted to demonstrate the superiority of the proposed schemes.