• 제목/요약/키워드: Smart Energy

검색결과 1,847건 처리시간 0.031초

The developments of heavy hydrocarbon reformer for SOFC

  • 배중면
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

스마트그리드를 통한 전기자동차의 전력망 영향 관리 효과 (Analysis of the Impact of Smart Grids on Managing EVs' Electrical Loads)

  • 박찬국;최도영;김현제
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.767-774
    • /
    • 2013
  • 전기자동차 보급이 확대됨과 동시에 충전이 특정 시간대에 몰리거나 전력수요가 높은 시간대에 늘어나면 전력수급 균형이 불안해질 수 있다. 따라서 전기자동차 충전으로 인한 전력수요가 증가함과 동시에, 전기자동차의 전력수요를 분산시키고, 전기자동차 배터리의 여분의 전기를 활용할 수 있는 스마트그리드 구축이 중요해진다. 아직 국내에서 스마트그리드가 전기자동차의 전력망 영향 관리에 어느 정도 영향을 미치는지에 대해서는 정량적 연구가 미흡한 실정이다. 본 연구는 스마트그리드를 통한 전기자동차의 전력망 영향 관리 효과를 정량적으로 분석하고 정책적 시사점을 제시하였다. 결과적으로 스마트그리드는 전기자동차의 전력망 영향을 효과적으로 관리할 수 있었다. 전력시장 구조와 규제 프레임워크는 스마트그리드 기술의 실증과 상용화 촉진을 뒷받침할 수 있어야 할 것이다.

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi;Marcelo A. Savi
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.281-290
    • /
    • 2024
  • This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.

Energy Policies and Research/Development Trends in the USA

  • Kirkici, Hulya;Bernstein, Bruce
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권5호
    • /
    • pp.197-201
    • /
    • 2010
  • As the world population increases and technology advances, the energy consumption and need for more energy increase. Communities and governments regularly address these needs and set policies for future energy generation and uses. This paper reviews current energy policies of the USA and the current trends in research and development efforts, for sustainable and renewable energy sources. Furthermore, the recent topic of IEEE's Smart Grid initiatives is discussed, and its role in the dielectrics and electrical insulation research is presented.

BEPAT: A platform for building energy assessment in energy smart homes and design optimization

  • Kamel, Ehsan;Memari, Ali M.
    • Advances in Energy Research
    • /
    • 제5권4호
    • /
    • pp.321-339
    • /
    • 2017
  • Energy simulation tools can provide information on the amount of heat transfer through building envelope components, which are considered the main sources of heat loss in buildings. Therefore, it is important to improve the quality of outputs from energy simulation tools and also the process of obtaining them. In this paper, a new Building Energy Performance Assessment Tool (BEPAT) is introduced, which provides users with granular data related to heat transfer through every single wall, window, door, roof, and floor in a building and automatically saves all the related data in text files. This information can be used to identify the envelope components for thermal improvement through energy retrofit or during the design phase. The generated data can also be adopted in the design of energy smart homes, building design tools, and energy retrofit tools as a supplementary dataset. BEPAT is developed by modifying EnergyPlus source code as the energy simulation engine using C++, which only requires Input Data File (IDF) and weather file to perform the energy simulation and automatically provide detailed output. To validate the BEPAT results, a computer model is developed in Revit for use in BEPAT. Validating BEPAT's output with EnergyPlus "advanced output" shows a difference of less than 2% and thus establishing the capability of this tool to facilitate the provision of detailed output on the quantity of heat transfer through walls, fenestrations, roofs, and floors.

뉴스초점 - 한국 토종 원자로 'SMART"의 오늘과 내일 (News Focus - Today and Tomorrow of the Korea-made NPP, SMART)

  • 김학로
    • 기술사
    • /
    • 제44권6호
    • /
    • pp.40-44
    • /
    • 2011
  • Nuclear energy in Korea began in 1958, when the Korea's atomic energy act was formulated and the relevant organizations were founded. Since then, notwithstanding the two catastrophe like TMI and Chernobyl accident, Korea made a wise decision to expand the peaceful uses of the nuclear energy as well as to localize the essential nuclear design technology of fuel and nuclear steam supply system. This decision resulted in the success of export of nuclear power plants as well as research reactor in 2010s. The Korea's nuclear policy, which well utilized 'international crisis in nuclear business' as 'opportunity of Korea to get. nuclear technology', is believed nice policy as a role model of nuclear new-comer countries. Based upon the success story of localization of nuclear technology, Korea had an eye for a niche market, which was a basis of development of SMART, Korea-made integral PWR. The operation of a SMART plant can sufficiently provide not only electricity but also fresh water for 100,000 residents. Last two years, Korea's nuclear industry team led by the Korea Atomic Energy Research Institute completed the standard design of SMART and applied to the Korea's regulatory body for standard design approval. Now the Korea's licensing authority is reviewing the design with the relevant documents, and the design team is doing its best to realize its hope to get the approval by the end of this year. From next year, the SMART business including construction and export will be explored by the KEPCO consortium.

  • PDF

스마트 유틸리티 네트워크 기반의 에너지 망 인프라 구축을 위한 네트워크 프로토콜에 관한 연구 (Survey on Network Protocols for Energy Network Infrastructure based on Smart Utility Networks)

  • 황광일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제1권3호
    • /
    • pp.119-124
    • /
    • 2012
  • 스마트 유틸리티 네트워크는 기존의 AMR, 스마트 그리드, 스마트 워터 그리드 등의 다양한 에너지 관련 서비스를 통합할 수 있는 에너지망 인프라로서 기존 사용자 중심의 통신망으로부터 기기 중심의 통신망으로의 새로운 패러다임 전환을 가능케 하고 있다. 이러한 스마트 유틸리티 네트워크는 관련 응용분야의 제약 조건과 요구사항에 있어 센서 네트워크와 많은 유사성을 가진다. 그리하여, 스마트 유틸리티 네트워크를 위한 새로운 네트워크 프로토콜을 개발하기 위해서는 기존의 관련 연구에 대한 철저한 분석이 선행되어야 한다. 따라서 본 논문에서는 스마트 유틸리티 네트워크의 서비스 요구사항과 설계 고려사항을 분석하고 기존의 저 전력 프로토콜과 데이터 수집기법 그리고 In-network 저장기법에 대한 분석을 통해 스마트 유틸리티 네트워크를 위한 새로운 네트워크 프로토콜의 설계 가이드라인을 제시한다.

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.

독립형 풍력기반 Smart Microgrid 시스템의 현장 실증 시험을 위한 도서지역 전력 및 경제성 시뮬레이션 (Power and Economic Simulation of Island for the Field Demonstration Test of Smart Microgrid System Based on Stand-alone Wind power)

  • 강상균;이은규;이장호
    • 신재생에너지
    • /
    • 제10권3호
    • /
    • pp.22-30
    • /
    • 2014
  • The isolated self-generating electricity with diesel engine generator has been used in islands far away from main land. It costs high because of increasing oil price, and unsafe to have supplying oil and its related components by ship due to unexpectable marine conditions. Therefore there is the need for the hybrid system of renewable energy like wind or solar energy systems with oil engine generator, which can reduce oil use and extend oil supplying period. In this study, the feasibility of such hybrid system with smart micro grid on the eight islands of Jeon-nam province is surveyed to find good place for the demonstration test of the hybrid system. In each island, 3 wind turbine systems of 10 kW and photovoltaic of 20 kW are tested with already installed diesel engine. The performance and costs of the hybrid system in each island are compared in the given conditions of solar and wind energy potential. As a result of the study, Jung-ma island is recommended for the optimum place to make real field demonstration test of isolated hybrid generating and smart grid systems.

일체형원자로 MMIS 설계에 적용을 위한 소프트웨어 시험 계획 (A Software Testing Plan for Integral Reactor MMIS Design)

  • 서용석;허섭;박근옥;이종복;김동훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1097-1100
    • /
    • 2001
  • 소프트웨어 개발자로부터 독립된 소프트웨어 시험자가 수행하는 소프트웨어 시험은 소프트웨어의 안전성 향상을 위해 필요하다. 컴퓨터기반의 디지틀시스템으로 설계되는 일체형원자로 MMIS에 적용하기 위한 소프트웨어 시험 계획을 개발할 필요가 있다. 본 논문은 소프트웨어 시험 계획을 소프트웨어시험 조직 구성, 시험 문서, 시험 절차, 시험 방법을 중심으로 제시한다. 소프트웨어 시험 방법은 원시코드 정적분석과 동적시험을 구분하여 기술한다. 본 논문에서 제시된 소프트웨어 시험 계획은 원자력 규제기관에서 요구하는 소프트웨어 시험 요구사항을 만족한다. 본 논문을 통해 제시된 소프트웨어 시험 계획을 일체형원자로 MMIS 소프트웨어 개발 시 적용하여 소프트웨어 고장율 데이터를 수집할 예정이다.

  • PDF