• Title/Summary/Keyword: Smart Challenge

Search Result 126, Processing Time 0.027 seconds

Improving the Reliability of IEEE 802.11s Based Wireless Mesh Networks for Smart Grid Systems

  • Kim, Jaebeom;Kim, Dabin;Lim, Keun-Woo;Ko, Young-Bae;Lee, Sang-Youm
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.629-639
    • /
    • 2012
  • A challenge faced by smart grid systems is providing highly reliable transmissions to better serve different types of electrical applications and improve the energy efficiency of the system. Although wireless networking technologies can provide high-speed and cost-effective solutions, their performance may be impaired by various factors that affect the reliability of smart grid networks. Here, we first suggest the use of IEEE 802.11s-based wireless LAN mesh networks as high-speed wireless backbone networks for smart grid infrastructure to provide high scalability and flexibility while ensuring low installation and management costs. Thereafter, we analyze some vital problems of the IEEE 802.11s default routing protocol (named hybrid wireless mesh protocol; HWMP) from the perspective of transfer reliability, and propose appropriate solutions with a new routing method called HWMP-reliability enhancement to improve the routing reliability of 802.11s-based smart grid mesh networking. A simulation study using ns-3 was conducted to demonstrate the superiority of the proposed schemes.

The Development of a One-time Password Mechanism Improving on S/KEY (S/KEY를 개선한 일회용 패스워드 메커니즘 개발)

  • 박중길
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.2
    • /
    • pp.25-36
    • /
    • 1999
  • In this paper we propose a one-time password mechanism that solves the problems of the S/KEY: the limitation of a usage and the need of storage for keys. because of using a cryptographic algorithm the proposed mechanism has no the limitation of a usage. Also because of producing the key for an authentication from a user's password it is easy to manage the authentication key and is possible to share the session key between a client and a server after the authentication process. In addition the proposed mechanism is easy to protect and manage the authentication information because of using a smart card and is adopted by the system that needs a noe-way authentication from a client to a server without the challenge of a server.

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

Modeling, Analysis and Propose improved Design of Smart Phone Cradle (스마트폰 거치대 모델링, 해석 및 설계 개선방안 제안)

  • Kim, Young-jea;Park, Sang-jin
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.452-459
    • /
    • 2015
  • Thanks to the development of applications, many people are using a smart phone cradle these days. But it has some problems. First of all, it is hard to fix on automobiles. Also, it is vulnerable to external vibration. Recognizing these problems, we decided to improve this device by using FreeCAD and ANSYS. Because FreeCAD is newly invented software, we used another 3D modeling software to cover shortages of tools in FreeCAD. Also, we used famous analysis software 'ANSYS' to analyze bending deformation, modal analysis, and harmonic analysis.

  • PDF

A Study on Reliability of Liquid-Crystal for Smart Window (액정 스마트윈도우의 신뢰성에 대한 연구)

  • Park, Byung-Kyu;Kim, Sun-Geum;Lee, Seung-Woo;Park, Gye-Choon;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.471-474
    • /
    • 2020
  • In recent years, the challenge of higher energy efficiency has emerged as urban buildings have become taller, and the area of window glasses has increased. To address the problem of energy efficiency in buildings, research on smart windows is being actively conducted. In this study, an accelerated experiment for thermal stability was conducted to fabricate a liquid crystal cell applicable to external windows. It was confirmed from the study that the function is maintained even in a high-temperature external environment through the change in transmittance by voltage. Compared with the initial transmittance, after the passage of time, the smart window cell to which the sealant was applied showed a small change in transmittance of 1~2%. This result confirmed the thermal stability of the liquid crystal-based smart window.

Industry 4.0 - A challenge for variation simulation tools for mechanical assemblies

  • Boorla, Srinivasa M.;Bjarklev, Kristian;Eifler, Tobias;Howard, Thomas J.;McMahon, Christopher A.
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • Variation Analysis (VA) is used to simulate final product variation, taking into consideration part manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from previous products and processes and allow the designer to apply this to the new product. A new challenge to this traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to changed mass production characteristics, are considered as major challenges. Opportunities including predicting residual stresses in the final product and linking them to product deterioration, calculating non-dimensional performances and extending simulations for process manufactured products, such as drugs, food products etc. are additional winning aspects for next generation VA tools.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

A Memory-Efficient Fingerprint Verification Algorithm Using a Multi-Resolution Accumulator Array

  • Pan, Sung-Bum;Gil, Youn-Hee;Moon, Dae-Sung;Chung, Yong-Wha;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Using biometrics to verify a person's identity has several advantages over the present practices of personal identification numbers (PINs) and passwords. At the same time, improvements in VLSI technology have recently led to the introduction of smart cards with 32-bit RISC processors. To gain maximum security in verification systems using biometrics, verification as well as storage of the biometric pattern must be done in the smart card. However, because of the limited resources (processing power and memory space) of the smart card, integrating biometrics into it is still an open challenge. In this paper, we propose a fingerprint verification algorithm using a multi-resolution accumulator array that can be executed in restricted environments such as the smart card. We first evaluate both the number of instructions executed and the memory requirement for each step of a typical fingerprint verification algorithm. We then develop a memory-efficient algorithm for the most memory-consuming step (alignment) using a multi-resolution accumulator array. Our experimental results show that the proposed algorithm can reduce the required memory space by a factor of 40 and can be executed in real time in resource-constrained environments without significantly degrading accuracy.

  • PDF

A Proposal of Institutional Prerequisites to the Participation of Virtual Power Plant in Electricity Market under the Smart Grid Paradigm (스마트그리드 하에서 가상발전소의 전력시장 참여를 위한 제도적 선결요건에 관한 제언)

  • Chung, Koo-Hyung;Park, Man-Geun;Hur, Don
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.375-383
    • /
    • 2015
  • The virtual power plant (VPP) is a new technology to achieve flexibility as well as controllability, like traditional centralized power plants, by integrating and operating different types of distributed energy resources (DER) with the information communication technology (ICT). Though small-sized DERs may not be controlled in a centralized manner, these are more likely to be utilized as power plants for centralized dispatch and participate in the energy trade given that these are integrated into a unified generation profile and certain technical properties such as dispatch schedules, ramp rates, voltage control, and reserves are explicitly implemented. Unfortunately, the VPP has been in a conceptual stage thus far and its common definition has not yet been established. Such a lack of obvious guidelines for VPP may lead to a further challenge of coming up with the business model and reinforcing the investment and technical support for VPP. In this context, this paper would aim to identify the definition of VPP as a critical factor in smart grid and, at the same time, discuss the details required for VPP to actively take part in the electricity market under the smart grid paradigm.

A Novel Smart Contract based Optimized Cloud Selection Framework for Efficient Multi-Party Computation

  • Haotian Chen;Abir EL Azzaoui;Sekione Reward Jeremiah;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.240-257
    • /
    • 2023
  • The industrial Internet of Things (IIoT) is characterized by intelligent connection, real-time data processing, collaborative monitoring, and automatic information processing. The heterogeneous IIoT devices require a high data rate, high reliability, high coverage, and low delay, thus posing a significant challenge to information security. High-performance edge and cloud servers are a good backup solution for IIoT devices with limited capabilities. However, privacy leakage and network attack cases may occur in heterogeneous IIoT environments. Cloud-based multi-party computing is a reliable privacy-protecting technology that encourages multiparty participation in joint computing without privacy disclosure. However, the default cloud selection method does not meet the heterogeneous IIoT requirements. The server can be dishonest, significantly increasing the probability of multi-party computation failure or inefficiency. This paper proposes a blockchain and smart contract-based optimized cloud node selection framework. Different participants choose the best server that meets their performance demands, considering the communication delay. Smart contracts provide a progressive request mechanism to increase participation. The simulation results show that our framework improves overall multi-party computing efficiency by up to 44.73%.