• Title/Summary/Keyword: Smart Cable

Search Result 191, Processing Time 0.026 seconds

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

A Development and Performance Assessment of On-Line Monitoring System for Optical Fiber Composite Underground Distribution Network using DTS (DTS를 활용한 광복합 지중 배전계통 실시간 감시시스템 개발 및 성능평가)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Cho, Hwi-Chang;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.115-121
    • /
    • 2011
  • Intelligent distribution equipment is inevitable to realize self-healing which is one of smart grid functions in distribution network. Therefore, most of distribution equipment have been developed with self diagnostic sensors. However, it is not effective to construct on-line monitoring system for underground distribution cable because of high cost and low sensitivity. Recently, optical fiber composite cable is being considered for communication and power delivery in order to cope with increasing communication in distribution network. This paper presents the design and performance assessment results of underground cable on-line monitoring system using DTS(Distributed Temperature Sensing) and optical fiber composite underground cable.

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.

Smart Control Techniques for Vibration Suppression of Stay Cable (사장 케이블 제진을 위한 스마트 제진 기법)

  • Jung Hyung-Jo;Park Chul-Min;Cho Sang-Won;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF

Specifications of 22.9kV HTS cables and FCLs considering protection systems in Korean power distribution system (국내계통 보호시스템을 고려한 22.9kV 초전도케이블/한류기 설계사양 제안)

  • Lee, Seung-Ryul;Park, Jong-Young;Yoon, Jae-Young;Lee, Byong-Jun;Yang, Byeong-Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.50-54
    • /
    • 2009
  • In Korea, 22.9kV 50MVA HTS (High Temperature Superconducting) cables and 630A/3kA hybrid SFCLs (Superconducting Fault Current Limiters) have been or are being developed by LS Cable, LS Industrial System, and Korea Electric Power Research Institute. They will be installed at Icheon 154kV Substation for real-power-distribution-system operation in 2010. This paper proposes specification of current limiting resistor/reactor for the SFCL and fault current condition of the HTS cable for applying the superconducting devices to Korean power distribution system, from the viewpoint of power system protection.

Determination of a Substation and Installation Site for applying Superconducting Cable/FCL to Real Power Grid (초전도케이블/한류기 실계통 적용 변전소 및 설치위치 선정 기술검토)

  • Yang, B.M.;Won, Y.J.;Kim, B.H.;Kang, J.W.;Yoon, J.Y.;Lee, S.R.;Moon, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • In attempts to closely study the effect of high efficiency, friendly environment HTS(High Temperature Superconducting) cable and SFCL(Superconducting Fault Current Limiters) on power system, several projects were carried out around the world. Promising results have been achieved in terms of cable capacity and reliability. commercial HTS cable and SFCL, however, must not only be only be feasible, but meet practical requirements as well. To facilitate the transition of HTS cable technology from the Lab. to the Real Grid, a New project for applying 22.9kV HTS cables and SFCL to the commercial Power Grid supported by Government has just started in KEPCO. Target of this project is to operate two 22.9kV, 50MVA, 150MVA HTS cables and two 22.9kV 630A, 3000A SFCL in a KEPCO Grid in order to demonstrate its reliability and stable operation. This paper will present the technology for selecting appropriate site and its plan for installation & operating of 22.9kV HTS cables & SFCL in KEPCO Grid.

Development of Smart Tendon Instrumented with Optical FBG Sensors (FBG 센서를 내장한 스마트 강연선 개발)

  • Kim, Jae-Min;Kim, Young-Sang;Kim, Hyoun-Wo;Seo, Dong-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.33-38
    • /
    • 2007
  • This paper reports an attempt to develop 7-wire steel tendon which is instrumented with optical FBG sensors. The tendon is devised to replace the king cable, which is located in the center of the tendon, by a steel tube in which the FBG sensor are attached along the hole using a high-mobility polyester resin. The circular steel tube has typical of 5 mm outer diameter and 1 mm inner diameter, and can easily be manufactured by means of an pultrusion process. Using the tube, in this study, three different types of one meter-long smart tendons are fabricated depending on mixture ratio of polyester resin and initiator. The performance of the FBG sensors as well as mechanical characteristics of the prototype are tested through the tensile test. Test results shows that the proposed smart tendon is in principle very effective for measuring the working strain of the tendon.

  • PDF

Design and Fabrication of Signal and Power Transmission Textile Cable for Smart Wearables (스마트 웨어러블의 신호와 전력 전송용 섬유형 케이블 개발)

  • Lee, Hyewon;Im, Hyo bin;Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.5
    • /
    • pp.616-620
    • /
    • 2018
  • Recently, many researches have been conducted to improve the performance and wearability of smart wearables. In this study, we designed and fabricated the signal and power transmission textile cables for smart wearables which have excellent wearability, durability and reliability. For the signal transmission textile cables, conductive yarns for the signal line and the ground line were developed. Three types of signal transmission textile cables have been developed using the conductive yarns. Linear density, tensile properties, electrical resistance and RF characteristics were tested to characterize the physical and electrical properties of three signal transmission textile cables. The conductive yarns have the very low resistance of $0.05{\Omega}/cm$ and showed excellent uniformity of electric resistance. Therefore, the electrical resistance of the signal transmission fiber cable can be reduced by increasing the number of conductive yarns used in signal and ground lines. However, the radio frequency (RF) characteristics of the signal transmission textile cables were better as the number of strands of the conductive yarns used was smaller. This is because the smaller the number of strands of conductive yarn used in signal transmission textile cables, the narrower and more parallel the distance between the signal line and the ground line. It is expected that the signal and power transmission textile cable for signal and power transmission will be utilized in smart wearable products.

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.