• Title/Summary/Keyword: Smart Cable

Search Result 191, Processing Time 0.029 seconds

Optical Network Monitoring System Using Smart Phone (스마트 폰을 이용한 광 통신망 감시 시스템)

  • Jung, So-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.218-226
    • /
    • 2017
  • In this paper, optical transport network in real time monitoring system using smart phone. The existing housing using monitoring was a smart phone of optical transport network access switch about an event with new installation of cognitive system in real time. This paper can this problem to be solved of the invention in real time maintenance using smart phone application and optical cable closure switch. If you want to find optical cable closure fault location, this smart phone web is very useful. Cable tie is isolation of fiber spare board from fiber switch tie occur push message. Housing and access, and an external failures otdr the measurement of the global positioning to be able to easily using the This paper can find event of optical cable closure unauthorized work and fault using smart phone OTDR function. the optical cable fault time reduction and network transport quality by managing real time optical cable section by using the smart phone can be maintained efficiently.

MR fluid damper-based smart damping systems for long steel stay cable under wind load

  • Jung, Hyung-Jo;Jang, Ji-Eun;Choi, Kang-Min;Lee, Heon-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.697-710
    • /
    • 2008
  • Long steel stay cables, which are mainly used in cable-stayed bridges, are easy to vibrate because of their low inherent damping characteristics. A lot of methods for vibration reduction of stay cables have been developed, and several techniques of them have been implemented to real structures, though each has its limitations. Recently, it was reported that smart (i.e. semi-active) dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. Some numerical and experimental studies on the application of smart damping systems employing an MR fluid damper, which is one of the most promising smart dampers, to a stay cable were carried out; however, most of the previous studies considered only one specific control algorithm in which they are interested. In this study, the performance verification of MR fluid damper-based smart damping systems for mitigating vibration of stay cables by considering the four commonly used semi-active control algorithms, such as the control algorithm based on Lyapunov stability theory, the maximum energy dissipation algorithm, the modulated homogeneous friction algorithm and the clipped-optimal control algorithm, is systematically carried out to find the most appropriate control strategy for the cable-damper system.

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

Study on the Photoelectric Composite Cable for Hybrid Interconnection Implementation (Hybrid 인터커넥션 구현을 위한 광전 복합케이블 제작에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Park, Ryeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • With the increasing use of smart electronic devices, the size of the related I/O interface market is increasing rapidly. Demand is also growing for the continuous increase of data and video signals-such as faster data processing speed and data storage capacity-in the smart electronic device input/output interface market. Currently, the POF hybrid cable used in the smart electronic device input / output interface market cannot transmit over a long distance because the optical loss is too large, and the GOF hybrid cable is both vulnerable to bending and other sudden outside changes, and expensive. Therefore, in this study, the design and fabrication of a GOF hybrid cable and fiber guide were carried out in order to develop a cable which can easily withstand external impact, has low optical losses, and meets the demand for continuous data and video signal increase in the smart electronic device input / output interface market.

Introduction of The First Demonstration Project for the Application of HTS Cable and SFCL to Real Smart Grid in South Korea (22.9kV 고온 초전도 케이블.초전도 한류기 스마트 그리드 적용을 위한 초전도 시범사업)

  • Yang, B.;Park, J.;Lee, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • Until now some countries including South Korea have made big progress and many efforts in the development of high temperature superconductor (HTS) power equipments. Especially, HTS Cable and superconducting fault current limiter (SFCL) are the strongest candidates among them from the viewpoint of applying to real grid. In South Korea, HTS cable and SFCL have been installed in test fields and tested successfully at Gochang PT Center of KEPCO. In order to meet practical requirements and be feasible in real grid, a demonstration project for HTS cable and SFCL systems, called GENI(green superconducting electric power network at Icheon substation) project, has been initiated to install 23kV HTS cable and SFCL systems in a utility network in South Korea since 2008. Namely, it says the first demonstration project for the application HTS system to real smart grid in South Korea. This paper presents the design and the application plan of the 22.9kV HTS cable and SFCL in 154kV Icheon substation in South Korea with the viewpoint of applying in Smat Grid.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.