• Title/Summary/Keyword: Smart Board

Search Result 274, Processing Time 0.035 seconds

Design of a Camera Calibration System in a Smart Thermo-Sensor Based Network (스마트 열센서 네트워크의 카메라 미세조정을 위한 시스템 구축)

  • Moon Sang-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.924-926
    • /
    • 2006
  • Sensor networks are an emerging area of mobile computing. Networked sensors represent a new design paradigm enabled by advances in micro electro-mechanical systems (MEMS) and low power technology. Created with integrated circuit (IC) technology and combined with computational logic, these 'smart' sensors have the benefit of small size, low cost and power consumption, and, the capability to perform on-board computation. Though this recent technological innovation has shown a significant promise in many application domains, it has also exposed several technical limitations that must be improved. In this paper, we discuss the system deploy issues for infrared thermo sensor camera calibration.

  • PDF

Secure large-scale E-voting system based on blockchain contract using a hybrid consensus model combined with sharding

  • Abuidris, Yousif;Kumar, Rajesh;Yang, Ting;Onginjo, Joseph
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.357-370
    • /
    • 2021
  • The evolution of blockchain-based systems has enabled researchers to develop nextgeneration e-voting systems. However, the classical consensus method of blockchain, that is, Proof-of-Work, as implemented in Bitcoin, has a significant impact on energy consumption and compromises the scalability, efficiency, and latency of the system. In this paper, we propose a hybrid consensus model (PSC-Bchain) composed of Proof of Credibility and Proof of Stake that work mutually to address the aforementioned problems to secure e-voting systems. Smart contracts are used to provide a trustworthy public bulletin board and a secure computing environment to ensure the accuracy of the ballot outcome. We combine a sharding mechanism with the PSC-Bchain hybrid approach to emphasize security, thus enhancing the scalability and performance of the blockchain-based e-voting system. Furthermore, we compare and discuss the execution of attacks on the classical blockchain and our proposed hybrid blockchain, and analyze the security. Our experiments yielded new observations on the overall security, performance, and scalability of blockchain-based e-voting systems.

A Study on ESS-based hybrid power generation system with easy expansion (증설이 용이한 ESS기반 하이브리드 발전시스템 연구)

  • Kim, Hee-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2019
  • This study is the central axis of the MG (Micro-Grid) configuration and it has the link through the modular hybrid power source and the DC bus, and it provides the function to detect and block the illegal connection by using the standard socket, And to achieve stabilization. Development of power conversion device, smart distribution panel, integrated control system and efficient demand management are required, and compatibility with MG whole system is urgent. This is a hybrid power generation system that is safe with a common power connection protocol and can be easily connected to anyone. This makes it easy to manage data and prepare for expansion of various manufacturers' systems.

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

Manufacture artificial intelligence education kit using Jetson Nano and 3D printer (Jetson Nano와 3D프린터를 이용한 인공지능 교육용 키트 제작)

  • SeongJu Park;NamHo Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.40-48
    • /
    • 2022
  • In this paper, an educational kit that can be used in AI education was developed to solve the difficulties of AI education. Through this, object detection and person detection in computer vision using CNN and OpenCV to learn practical-oriented experiences from theory-centered and user image recognition (Your Own) that learns and recognizes specific objects Image Recognition), user object classification (Segmentation) and segmentation (Classification Datasets), IoT hardware control that attacks the learned target, and Jetson Nano GPIO, an AI board, are developed and utilized to develop and utilize textbooks that help effective AI learning made it possible.

A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment (스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구)

  • Choi, Jin-Young;Park, Eun-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

Implementation of ANSI C12.22 Communication Protocol for Two-way Communications of Smart Meter (스마트미터의 양방향 통신을 위한 ANSI C12.22 통신 프로토콜 구현)

  • Lee, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.815-821
    • /
    • 2013
  • In this paper, application layer protocol of C12.22 node, defined by ANSI C12.22 is implemented. ANSI C12.22 defines application layer only among the OSI 7 layers and recommends using the existing protocols for the 1~4 layer to transmit the information. TCP/IP which is one of the generally used protocols has been applied for the transport and network layer protocol in this paper. ANSI C12.19 defines the parameters for the watt-hour meter, and C12.22 application layer defines the network services and data structures networking the watt-hour meter parameters at a minimum. This kind of services and data structures are used for the configuration, programming, monitoring of the networked watt-hour meter or collecting information of the watt-hour meter. A embedded board has been used to implement the C12.22 application layer and a test program for the AMI application server has been developed for the functional test.

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.